Original Literature | Model OverView |
---|---|
Publication
Title
Cellular signaling in macrophage migration and chemotaxis.
Affiliation
The Randall Centre for Molecular Mechanisms of Cell Function, King's CollegeLondon, United Kingdom. gareth.jones@kcl.ac.uk
Abstract
Whereas most cells in adult tissues are fixed in place by cell junctions,leukocytes are motile and able to migrate actively through the walls of bloodvessels into surrounding tissues. The actin cytoskeleton of these cells plays acentral role in locomotion, phagocytosis, and the regulation of cell shape thatare crucial elements of neutrophil and monocyte/macrophage function. This reviewwill concentrate on how macrophages in particular control the actin cytoskeletonto generate cell movement and the shape changes required for chemotaxis. It hasrecently become evident that a complex of seven proteins known as the Arp2/3complex regulates the assembly of new actin filament networks at the leadingfront of moving cells. Proteins of the Wiskott-Aldrich Syndrome Protein (WASP)family bind directly to the Arp2/3 complex and stimulate its ability to promotethe nucleation of new actin filaments. Upstream of the WASP family proteins,receptor tyrosine kinases, G-protein-coupled receptors, phosphoinositide-3-OHkinase (PI 3-kinase), and the Rho family of GTPases receive and transduce thesignals that lead to actin nucleation through WASP-Arp2/3 action. Although manygaps remain in our understanding, we are now in a position to considercompleting signaling pathways that are initiated from outside the cell to theactin rearrangements that drive cell motility and chemotaxis.
PMID
11073096
|
Entity
Cdc42
--
MO000000021
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m68
10
infinite
0
InterPro | IPR003577 |
TRANSPATH | MO000000021 |
--
PI3K
--
MO000000030
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m37
10
infinite
0
TRANSPATH | MO000000030 |
--
trimeric G-proteins(alpha+beta+gamma subunit)
--
MO000000315
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m250
10
infinite
0
TRANSPATH | MO000000315 |
--
PIP2
--
MO000000331
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m290229
10
infinite
0
TRANSPATH | MO000000331 |
--
M-CSF-1-R
--
MO000007995
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m1031
10
infinite
0
InterPro | IPR000719 |
TRANSPATH | MO000007995 |
--
IQGAP1
--
MO000017251
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m2107
10
infinite
0
InterPro | IPR008936 |
TRANSPATH | MO000017251 |
--
PIP3
--
MO000017272
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m157492
10
infinite
0
TRANSPATH | MO000017272 |
--
WASP
--
MO000017852
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m2602
10
infinite
0
InterPro | IPR000697 |
TRANSPATH | MO000017852 |
--
profilin
--
MO000019591
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m4135
10
infinite
0
TRANSPATH | MO000019591 |
--
Arp2/3 complex
--
MO000019632
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m4169
10
infinite
0
TRANSPATH | MO000019632 |
--
moesin
--
MO000023102
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m6914
10
infinite
0
InterPro | IPR008954 |
TRANSPATH | MO000023102 |
--
ezrin
--
MO000023103
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m6915
10
infinite
0
InterPro | IPR008954 |
TRANSPATH | MO000023103 |
--
radixin
--
MO000035548
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m14041
10
infinite
0
InterPro | IPR008954 |
TRANSPATH | MO000035548 |
--
RhoGDI
--
MO000036321
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m14748
10
infinite
0
TRANSPATH | MO000036321 |
--
--
e1
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane
--
--
--
csml-variable:Double
m1
0
infinite
0
--
serpentine receptor:trimeric G-proteins:GDP
--
e10
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m10
0
infinite
0
--
serpentine receptor: Leukotrines:G-proteins:GDP
--
e11
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m11
0
infinite
0
--
chemokines
--
e12
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m12
0
infinite
0
--
chemokines:serpentine receptor:G-proteins:GDP
--
e13
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m13
0
infinite
0
--
Complement factors
--
e14
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m14
0
infinite
0
--
serpentine receptor:complement factors:G-proteins:GDP
--
e15
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m15
0
infinite
0
--
GDP
--
e16
cso30:c:SmallMolecule
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m16
0
infinite
0
--
Gproteins:GDP
--
e17
cso30:c:Protein
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m17
0
infinite
0
--
serpentine receptor:Bacterial component:G-proteins:GTP
--
e18
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m18
0
infinite
0
--
serpentine receptor:Leukotrines:G-proteins:GTP
--
e19
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m19
0
infinite
0
--
--
e2
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m2
0
infinite
0
--
GTP
--
e20
cso30:c:SmallMolecule
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m20
0
infinite
0
--
serpentine receptor:chemokines:G-proteins:GTP
--
e21
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m21
0
infinite
0
--
serpentine receptor:complement factors:G-proteins:GTP
--
e22
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m22
0
infinite
0
--
Alpha subunit:GTP
--
e23
cso30:c:Protein
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m23
0
infinite
0
--
Beta:Gamma subunit
--
e24
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m24
0
infinite
0
--
Alpha subunit:GDP:PLC{active}
--
e26
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
--
csml-variable:Double
m26
0
infinite
0
--
M-CSF(2):M-CSF-1-R
--
e27
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m27
0
infinite
0
--
Alpha subunit:GDP:PI 3-Kinase {active}
--
e28
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m28
0
infinite
0
--
adenyl cyclase
--
e29
cso30:c:Protein
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m29
0
infinite
0
--
--
e3
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
--
csml-variable:Double
m3
0
infinite
0
--
Alpha subunit:GDP:Adenyl cyclase{active}
--
e30
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
--
csml-variable:Double
m30
0
infinite
0
--
Beta:Gammasubunit:adenyl cyclase{active}
--
e31
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
--
csml-variable:Double
m31
0
infinite
0
--
Beta:Gammasubunit:PI 3 Kinase{active}
--
e32
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m32
0
infinite
0
--
Beta:Gammasubunit:PLC{active}
--
e33
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
--
csml-variable:Double
m33
0
infinite
0
--
p110 catalytic subunit
--
e34
cso30:c:Protein
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m34
0
infinite
0
--
M-CSF(2):M-CSF-1-R(2)
--
e35
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m35
0
infinite
0
--
101kDa Regulatory subunit
--
e36
cso30:c:Protein
cso30:i:CC_Cytoplasm
--
--
csml-variable:Double
m36
0
infinite
0
--
M-CSF(2):M-CSF-1-R(2){p}
--
e37
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m38
0
infinite
0
--
p85
--
e38
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m39
0
infinite
0
--
MCSF(2):M-CSF-1-R(2){p}:PI3K (p110:p85)
--
e39
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m40
0
infinite
0
--
--
e4
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m4
0
infinite
0
--
MCSF(2):M-CSF-1-R (2) {p}:PI3K(p110:p85):Grb2
--
e41
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m43
0
infinite
0
--
C3 transferase
--
e42
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m44
0
infinite
0
--
Rho
--
e43
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m45
0
infinite
0
--
Rho:ADP:Ribose
--
e44
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m46
0
infinite
0
--
Rho{inactive}
--
e45
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m47
0
infinite
0
--
ADP
--
e46
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m48
0
infinite
0
--
Ribose
--
e47
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m49
0
infinite
0
--
Vav:PIP3
--
e48
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m64
0
infinite
0
--
extracellular components
--
e49
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m65
0
infinite
0
--
serpentine receptor
--
e5
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m5
0
infinite
0
--
Bacterial component
--
e6
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m6
0
infinite
0
--
Rac
--
e64
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m67
0
infinite
0
--
Rho:Rac:Cdc42:GDIs
--
e65
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m69
0
infinite
0
--
RhoGDI:RhoA:Rac1:Cdc42
--
e66
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m70
0
infinite
0
--
RhoGDI:ezrin:radixin:moesin
--
e67
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m71
0
infinite
0
--
RhoGDI:RhoA:Rac1:moesin:CD44
--
e68
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m72
0
infinite
0
--
RhoGDI:RhoA:Rac1:moesin:ICAM-1
--
e69
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m73
0
infinite
0
--
serpentine receptor:Bacterial component:Gproteins:GDP
--
e7
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m7
0
infinite
0
--
Actin
--
e70
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m74
0
infinite
0
--
RhoGDI:RhoA:Rac1:moesin:actin
--
e71
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m75
0
infinite
0
--
RhoGEF:ezrin:moesin:radixin
--
e72
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m76
0
infinite
0
--
DB1:ezrin:moesin:radixin
--
e73
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m77
0
infinite
0
--
Rac{active}
--
e74
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m78
0
infinite
0
--
Tiam1
--
e75
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m79
0
infinite
0
--
PIP3:Tiam1
--
e76
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m80
0
infinite
0
--
PIP3:Sos
--
e77
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m81
0
infinite
0
--
fMLP:fMLP-R
--
e78
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m82
0
infinite
0
--
Leukotrines
--
e8
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m8
0
infinite
0
--
IQGAP1:Rac
--
e80
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m84
0
infinite
0
--
Cdc42:CIP4
--
e81
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m85
0
infinite
0
--
IQGAP1:Cdc42
--
e82
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m86
0
infinite
0
--
ROK
--
e83
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m87
0
infinite
0
--
Mysosin II Light chain Kinase
--
e84
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m88
0
infinite
0
--
Mysosin II Light chain Kinase{p}
--
e85
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m90
0
infinite
0
--
Myosin I heavy chain
--
e86
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m91
0
infinite
0
--
Myosin I heavy chain{p}
--
e87
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m92
0
infinite
0
--
mDia1:profilin
--
e88
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m93
0
infinite
0
--
WASP:Cdc42
--
e89
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m94
0
infinite
0
--
M-CSF(2)
--
e9
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m9
0
infinite
0
--
WASP:Grb2
--
e90
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m95
0
infinite
0
--
Nck
--
e91
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m96
0
infinite
0
--
WASP:Nck
--
e92
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m97
0
infinite
0
--
WASP:profilin
--
e93
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m98
0
infinite
0
--
WASP:Fyn
--
e94
cso30:c:Complex
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m99
0
infinite
0
--
WASP:Arp2/3 complex
--
e95
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m100
0
infinite
0
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c1 : 1
stoichiometry:c2 : 1
stoichiometry:c3 : 1
m6*m10*0.1
nodelay
--
0
PMID: 11073096,10427991,9704038 Cells are responsive to bacterial components, leukotrienes, complement factors, and chemokines, an ever-expanding family of attractants controlling leukocyte migration. All these attractants in both neutrophils and monocytes/macrophages interact with specific serpentine (heptahelical) receptors [13 ], embedded in the plasma membrane, that transduce ligand-induced signals by coupling to heterotrimeric G proteins
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c31 : 1
stoichiometry:c33 : 1
stoichiometry:c32 : 1
stoichiometry:c34 : 1
m20*m15*0.1
nodelay
--
0
PMID: 11073096 Ligand (chemokine) binding to the receptor induces a conformational change that results in exchange of GDP for GTP on the {alpha} subunit, inducing its dissociation from both the receptor and the Gbeta{gamma} subunit.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c35 : 1
stoichiometry:c36 : 1
stoichiometry:c37 : 1
m18*0.1
nodelay
--
0
PMID: 11073096 Ligand (chemokine) binding to the receptor induces a conformational change that results in exchange of GDP for GTP on the {alpha} subunit, inducing its dissociation from both the receptor and the Gbeta{gamma} subunit.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c38 : 1
stoichiometry:c39 : 1
stoichiometry:c40 : 1
m19*0.1
nodelay
--
0
PMID: 11073096 Ligand (chemokine) binding to the receptor induces a conformational change that results in exchange of GDP for GTP on the {alpha} subunit, inducing its dissociation from both the receptor and the Gbeta{gamma} subunit.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c41 : 1
stoichiometry:c42 : 1
stoichiometry:c43 : 1
m21*0.1
nodelay
--
0
PMID: 11073096 Ligand (chemokine) binding to the receptor induces a conformational change that results in exchange of GDP for GTP on the {alpha} subunit, inducing its dissociation from both the receptor and the Gbeta{gamma} subunit.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c44 : 1
stoichiometry:c45 : 1
stoichiometry:c46 : 1
m22*0.1
nodelay
--
0
PMID: 11073096 Ligand (chemokine) binding to the receptor induces a conformational change that results in exchange of GDP for GTP on the {alpha} subunit, inducing its dissociation from both the receptor and the Gbeta{gamma} subunit.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c47 : 1
stoichiometry:c48 : 1
stoichiometry:c49 : 1
m23*m25*0.1
nodelay
--
0
PMID: 11073096 The G protein complex dissociates into {alpha} and ?{gamma} subunits, which in turn bind and activate target enzymes such as phospholipase C, phosphoinositide 3-kinase (PI 3-kinase), or adenyl cyclase.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c51 : 1
stoichiometry:c75 : 1
stoichiometry:c52 : 1
m23*m37*0.1
nodelay
--
0
PMID: 11073096 The G protein complex dissociates into {alpha} and ?{gamma} subunits, which in turn bind and activate target enzymes such as phospholipase C, phosphoinositide 3-kinase (PI 3-kinase), or adenyl cyclase.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c53 : 1
stoichiometry:c54 : 1
stoichiometry:c55 : 1
m29*m23*0.1
nodelay
--
0
PMID: 11073096 The G protein complex dissociates into {alpha} and ?{gamma} subunits, which in turn bind and activate target enzymes such as phospholipase C, phosphoinositide 3-kinase (PI 3-kinase), or adenyl cyclase.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c56 : 1
stoichiometry:c57 : 1
stoichiometry:c58 : 1
m24*m29*0.1
nodelay
--
0
PMID: 11073096 The G protein complex dissociates into {alpha} and ?{gamma} subunits, which in turn bind and activate target enzymes such as phospholipase C, phosphoinositide 3-kinase (PI 3-kinase), or adenyl cyclase.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c59 : 1
stoichiometry:c76 : 1
stoichiometry:c61 : 1
m24*m37*0.1
nodelay
--
0
PMID: 11073096 The G protein complex dissociates into {alpha} and ?{gamma} subunits, which in turn bind and activate target enzymes such as phospholipase C, phosphoinositide 3-kinase (PI 3-kinase), or adenyl cyclase.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c5 : 1
stoichiometry:c4 : 1
stoichiometry:c6 : 1
m8*m10*0.1
nodelay
--
0
PMID: 11073096,10427991,9704038 Cells are responsive to bacterial components, leukotrienes, complement factors, and chemokines, an ever-expanding family of attractants controlling leukocyte migration. All these attractants in both neutrophils and monocytes/macrophages interact with specific serpentine (heptahelical) receptors [13 ], embedded in the plasma membrane, that transduce ligand-induced signals by coupling to heterotrimeric G proteins
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c62 : 1
stoichiometry:c63 : 1
stoichiometry:c64 : 1
m25*m24*0.1
nodelay
--
0
PMID: 11073096 The G protein complex dissociates into {alpha} and ?{gamma} subunits, which in turn bind and activate target enzymes such as phospholipase C, phosphoinositide 3-kinase (PI 3-kinase), or adenyl cyclase.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c65 : 1
stoichiometry:c66 : 1
stoichiometry:c74 : 1
m34*m36*0.1
nodelay
--
0
PMID:11073096,10579926 At least four Class I PI 3-kinase isoforms exist in mammalian cells, but only one form, a single Class IB variant containing the p110{gamma} catalytic subunit complexed with a 101-kDa regulatory protein, is thought to interact with G-proteins in leukocytes. PMID:11073096 he free G{alpha} and G?{gamma} subunits then interact with and modulate the activity of target proteins such as the Class 1B p101/p110{gamma} PI 3-kinase.
p22
p22
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c50 : 1
stoichiometry:c60 : 1
stoichiometry:c70 : 1
m290229*m28*0.1
nodelay
--
0
PMID: 11073096 Whatever the case, all appear to converge on a common pathway where the outcome will lead to the phosphorylation of phosphatidylinositol-4,5-bisphosphate (PIP2) by activated PI 3-kinase. As a result, phosphatidylinositol-3,4,5-triphosphate (PIP3) is generated
p22
p23
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c71 : 1
stoichiometry:c72 : 1
stoichiometry:c73 : 1
m32*m290229*0.1
nodelay
--
0
PMID: 11073096 Whatever the case, all appear to converge on a common pathway where the outcome will lead to the phosphorylation of phosphatidylinositol-4,5-bisphosphate (PIP2) by activated PI 3-kinase. As a result, phosphatidylinositol-3,4,5-triphosphate (PIP3) is generated
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c67 : 1
stoichiometry:c68 : 1
m89*0.1
nodelay
--
0
PMID: 11073096 Homodimers of cytokine (such as CSF-1) induce a rapid sequence of changes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c69 : 1
stoichiometry:c77 : 1
stoichiometry:c78 : 1
m9*m1031*0.1
nodelay
--
0
PMID: 11073096 Ligand-induced covalent dimerization of receptor leads to autophosphorylation at a number of tyrosine residues on the cytoplasmic tail, which initiates signaling events that precede the rapid internalization and subsequent degradation of receptor-ligand complexes
p26
p26
cso30:i:ME_Dimerization
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c79 : 1
stoichiometry:c80 : 1
stoichiometry:c81 : 1
m1031*m27*0.1
nodelay
--
0
PMID: 11073096 Ligand-induced covalent dimerization of receptor leads to autophosphorylation at a number of tyrosine residues on the cytoplasmic tail, which initiates signaling events that precede the rapid internalization and subsequent degradation of receptor-ligand complexes
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c82 : 1
stoichiometry:c83 : 1
m35*0.1
nodelay
--
0
PMID: 11073096 Ligand-induced covalent dimerization of receptor leads to autophosphorylation at a number of tyrosine residues on the cytoplasmic tail, which initiates signaling events that precede the rapid internalization and subsequent degradation of receptor-ligand complexes PMID: 11073096,8947469 Unlike serpentine receptors, receptor tyrosine kinases such as CSF-1R directly interact with a host of substrates after autophosphorylation induced by ligand binding, although in CSF-1-treated mouse macrophages, PI 3-kinase is the major protein associated with the activated receptor
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c84 : 1
stoichiometry:c85 : 1
stoichiometry:c86 : 1
m34*m39*0.1
nodelay
--
0
PMID: 11073096 The p110 subunits in these PI 3-kinases exist in complex with a p85 protein that has two Src-homology-2 (SH2) domains
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c87 : 1
stoichiometry:c88 : 1
stoichiometry:c89 : 1
m37*m38*0.1
nodelay
--
0
PMID: 11073096,10754559 The latter bind to phosphorylated tyrosine residues found on activated CSF-1R, thus allowing translocation to the plasma membrane where their lipid (such as PIP2) and other substrates are found
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c8 : 1
stoichiometry:c7 : 1
stoichiometry:c11 : 1
m12*m10*0.1
nodelay
--
0
PMID: 11073096,10427991,9704038 Cells are responsive to bacterial components, leukotrienes, complement factors, and chemokines, an ever-expanding family of attractants controlling leukocyte migration. All these attractants in both neutrophils and monocytes/macrophages interact with specific serpentine (heptahelical) receptors [13 ], embedded in the plasma membrane, that transduce ligand-induced signals by coupling to heterotrimeric G proteins
p31
p31
cso30:i:ME_Phosphorylation
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c93 : 1
stoichiometry:c90 : 1
stoichiometry:c94 : 1
m290229*m40*0.1
nodelay
--
0
PMID: 11073096 As was described for serpentine receptors, the net result of PI 3-kinase activation through receptor tyrosine kinases is the generation of PIP3 PMID: 11073096 Once again, recruitment to the plasma membrane of any of the p110 catalytic subunits results in the generation of PIP3
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c96 : 1
stoichiometry:c201 : 1
stoichiometry:c97 : 1
m42*m40*0.1
nodelay
--
0
PMID: 11073096,7737969 It was shown earlier that CSF-1R induces direct interaction of PI 3-kinase (via its p85 subunit) with the SH2/SH3 adaptor protein Grb2
p33
p33
cso30:i:ME_ADPRibosylation
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c98 : 1
stoichiometry:c99 : 1
stoichiometry:c103 : 1
stoichiometry:c104 : 1
stoichiometry:c100 : 1
m44*m45*m48*m49*0.1
nodelay
--
0
PMID: 11073096,1643657 The most frequently used tool for studying Rho function is C3 transferase, an exoenzyme from Clostridium botulinum, which ADP-ribosylates and inactivates Rho
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c101 : 1
stoichiometry:c102 : 1
m46*0.1
nodelay
--
0
PMID: 11073096,1643657 The most frequently used tool for studying Rho function is C3 transferase, an exoenzyme from Clostridium botulinum, which ADP-ribosylates and inactivates Rho
p35
p35
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c105 : 1
stoichiometry:c106 : 1
stoichiometry:c107 : 1
m63*m157492*0.1
nodelay
--
0
PMID: 11073096,8990121 In the case of Vav, a GEF expressed only in hematopoietic cells, there is good evidence for this hypothesis because Vav is activated by tyrosine phosphorylation in response to extracellular signals, and binding of PIP3 enhances this phosphorylation PMID: 11073096,9268346 PIP3 binds to the PH domain of at least three GEFs, Tiam1, Sos, and the leukocyte-specific Vav
p36
p36
cso30:i:ME_Phosphorylation
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c108 : 1
stoichiometry:c110 : 1
stoichiometry:c111 : 1
stoichiometry:c109 : 1
m63*m65*m64*0.1
nodelay
--
0
PMID: 11073096,8990121 In the case of Vav, a GEF expressed only in hematopoietic cells, there is good evidence for this hypothesis because Vav is activated by tyrosine phosphorylation in response to extracellular signals, and binding of PIP3 enhances this phosphorylation
p37
p37
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c112 : 1
stoichiometry:c113 : 1
stoichiometry:c114 : 1
stoichiometry:c115 : 1
stoichiometry:c116 : 1
m45*m67*m68*m4142*0.1
nodelay
--
0
PMID:11073096,7888179,10081066 Finally, Rho, Rac, and Cdc42 have all been shown to complex with proteins known as GDIs (guanine nucleotide dissociation inhibitors), which prevent their interaction with other regulatory proteins and keep them sequestered in the cytoplasm
p38
p38
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c117 : 1
stoichiometry:c118 : 1
stoichiometry:c119 : 1
stoichiometry:c120 : 1
stoichiometry:c121 : 1
m68*m14748*m1574*m146*0.1
nodelay
--
0
PMID: 11073096,9490022 Of the three mammalian GDIs specific for the Rho family, only RhoGDI has a high affinity for RhoA, Rac1, and Cdc42
p39
p39
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c122 : 1
stoichiometry:c123 : 1
stoichiometry:c124 : 1
stoichiometry:c125 : 1
stoichiometry:c126 : 1
m14748*m14041*m6915*m6914*0.1
nodelay
--
0
PMID: 11073096,8858161 In addition to keeping Rho family proteins in an inactive complex in the cytoplasm, RhoGDI interacts with ERM (ezrin/radixin/moesin) proteins, which in turn interact with transmembrane proteins such as CD44 and ICAM-1, and also with actin
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c10 : 1
stoichiometry:c9 : 1
stoichiometry:c12 : 1
m14*m10*0.1
nodelay
--
0
PMID: 11073096,10427991,9704038 Cells are responsive to bacterial components, leukotrienes, complement factors, and chemokines, an ever-expanding family of attractants controlling leukocyte migration. All these attractants in both neutrophils and monocytes/macrophages interact with specific serpentine (heptahelical) receptors [13 ], embedded in the plasma membrane, that transduce ligand-induced signals by coupling to heterotrimeric G proteins
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c127 : 1
stoichiometry:c128 : 1
stoichiometry:c129 : 1
m71*m399*0.1
nodelay
--
0
PMID: 11073096,8858161 In addition to keeping Rho family proteins in an inactive complex in the cytoplasm, RhoGDI interacts with ERM (ezrin/radixin/moesin) proteins, which in turn interact with transmembrane proteins such as CD44 and ICAM-1, and also with actin
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c130 : 1
stoichiometry:c131 : 1
stoichiometry:c132 : 1
m71*m242*0.1
nodelay
--
0
PMID: 11073096,8858161 In addition to keeping Rho family proteins in an inactive complex in the cytoplasm, RhoGDI interacts with ERM (ezrin/radixin/moesin) proteins, which in turn interact with transmembrane proteins such as CD44 and ICAM-1, and also with actin
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c133 : 1
stoichiometry:c134 : 1
stoichiometry:c135 : 1
m71*m74*0.1
nodelay
--
0
PMID: 11073096,8858161 In addition to keeping Rho family proteins in an inactive complex in the cytoplasm, RhoGDI interacts with ERM (ezrin/radixin/moesin) proteins, which in turn interact with transmembrane proteins such as CD44 and ICAM-1, and also with actin
p43
p43
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c136 : 1
stoichiometry:c137 : 1
stoichiometry:c138 : 1
stoichiometry:c139 : 1
stoichiometry:c140 : 1
m2225*m6915*m6914*m14041*0.1
nodelay
--
0
PMID: 11073096,9681826 ERM proteins can also bind to the Rho GEF, Dbl, suggesting that they may coordinate the release of Rho proteins from GDIs and enhance exchange of GDP for GTP
p43
p44
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c141 : 1
stoichiometry:c142 : 1
stoichiometry:c143 : 1
stoichiometry:c144 : 1
stoichiometry:c145 : 1
m78700*m14041*m6915*m6914*0.1
nodelay
--
0
PMID: 11073096,9681826 ERM proteins can also bind to the Rho GEF, Dbl, suggesting that they may coordinate the release of Rho proteins from GDIs and enhance exchange of GDP for GTP
p45
p45
cso30:i:ME_UnknownActivation
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c146 : 1
stoichiometry:c147 : 1
stoichiometry:c148 : 1
m38*m67*0.1
nodelay
--
0
PMID: 11073096,9099945 Rac is activated by a wide variety of tyrosine kinase receptors including the CSF-1R and serpentine receptors .
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c149 : 1
stoichiometry:c150 : 1
stoichiometry:c151 : 1
m157492*m79*0.1
nodelay
--
0
PMID: 11073096,9268346 PIP3 binds to the PH domain of at least three GEFs, Tiam1, Sos, and the leukocyte-specific Vav
p46
p47
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c152 : 1
stoichiometry:c153 : 1
stoichiometry:c154 : 1
m157492*m1720*0.1
nodelay
--
0
PMID: 11073096,9268346 PIP3 binds to the PH domain of at least three GEFs, Tiam1, Sos, and the leukocyte-specific Vav
p48
p48
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c155 : 1
stoichiometry:c156 : 1
stoichiometry:c157 : 1
m138859*m12151*0.1
nodelay
--
0
PMID: 11073096,8810279 It should not be forgotten that many other possibilities exist. It has been shown that N-formyl-methionyl-leucyl-phenylalanine (fMLP) receptor stimulation will also cause activation of the src-related kinase, Lyn, directly indicating the involvement of tyrosine kinase activity leading to Rac and Cdc42 activation through serpentine receptor activation.
p49
p49
cso30:i:ME_UnknownActivation
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c158 : 1
stoichiometry:c159 : 1
stoichiometry:c160 : 1
m82*m128*0.1
nodelay
--
0
PMID: 11073096,8810279 It should not be forgotten that many other possibilities exist. It has been shown that N-formyl-methionyl-leucyl-phenylalanine (fMLP) receptor stimulation will also cause activation of the src-related kinase, Lyn, directly indicating the involvement of tyrosine kinase activity leading to Rac and Cdc42 activation through serpentine receptor activation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c14 : 1
stoichiometry:c18 : 1
stoichiometry:c16 : 1
m5*m17*0.1
nodelay
--
0
PMID: 11073096 In the GDP-bound form, the {alpha} subunit interacts with the ? and {gamma} subunits to form an inactive heterotrimer that binds to the serpentine receptor
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c161 : 1
stoichiometry:c162 : 1
stoichiometry:c163 : 1
m67*m2107*0.1
nodelay
--
0
PMID: 11073096,8756646 For example, IQGAP1, which is abundant in lamellipodia, binds to actin filaments and also to Rac and Cdc42
p50
p51
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c164 : 1
stoichiometry:c165 : 1
stoichiometry:c166 : 1
m2107*m68*0.1
nodelay
--
0
PMID: 11073096,8756646 For example, IQGAP1, which is abundant in lamellipodia, binds to actin filaments and also to Rac and Cdc42
p52
p52
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c167 : 1
stoichiometry:c168 : 1
stoichiometry:c169 : 1
m68*m15135*0.1
nodelay
--
0
PMID: 11073096,9210375 A Cdc42-interacting protein, CIP4, shows sequence homology to a small region of ERM proteins and may act as a transducer to the actin cytoskeleton
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c170 : 1
stoichiometry:c171 : 1
stoichiometry:c172 : 1
m87*m88*0.1
nodelay
--
0
PMID: 11073096,10081063,9037011 In addition, Rho-kinase/ROK can induce the phosphorylation of myosin II light chain kinase, whereas the Rac/Cdc42-specific PAK family of kinases can phosphorylate myosin I heavy chain, although it is debatable whether this occurs in mammalian cells
p53
p54
cso30:i:ME_Phosphorylation
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c173 : 1
stoichiometry:c174 : 1
stoichiometry:c175 : 1
m91*m3079*0.1
nodelay
--
0
PMID: 11073096,10081063,9037011 In addition, Rho-kinase/ROK can induce the phosphorylation of myosin II light chain kinase, whereas the Rac/Cdc42-specific PAK family of kinases can phosphorylate myosin I heavy chain, although it is debatable whether this occurs in mammalian cells
p55
p55
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c176 : 1
stoichiometry:c177 : 1
stoichiometry:c178 : 1
m4135*m4134*0.1
nodelay
--
0
PMID: 11073096,9214622 Finally, the Rho target p140mDia can bind to profilin, an actin-binding protein with the potential to enhance actin polymerization at the leading edge of migrating cells.
p56
p56
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c179 : 1
stoichiometry:c180 : 1
stoichiometry:c182 : 1
stoichiometry:c181 : 1
m68*m2602*m20*0.1
nodelay
--
0
PMID: 11073096,8805223,8643625,8625410 Three groups have demonstrated that WASP interacts directly with Cdc42 in a GTP-dependent manner PMID: 11073096,9822597 Just carboxy-terminal to the EVH1 domain of WASP is the CRIB motif, which confers interaction with Cdc42, and more centrally there are proline-rich sequences that can interact with SH3-containing proteins such as the adaptor proteins Nck and Grb2, protein tyrosine kinases of the c-Src family such as Fyn, and the actin-binding protein profilin
p57
p57
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c183 : 1
stoichiometry:c184 : 1
stoichiometry:c185 : 1
m2602*m42*0.1
nodelay
--
0
PMID: 11073096,9822597 Just carboxy-terminal to the EVH1 domain of WASP is the CRIB motif, which confers interaction with Cdc42, and more centrally there are proline-rich sequences that can interact with SH3-containing proteins such as the adaptor proteins Nck and Grb2, protein tyrosine kinases of the c-Src family such as Fyn, and the actin-binding protein profilin
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c186 : 1
stoichiometry:c187 : 1
stoichiometry:c188 : 1
m2602*m96*0.1
nodelay
--
0
PMID: 11073096,9822597 Just carboxy-terminal to the EVH1 domain of WASP is the CRIB motif, which confers interaction with Cdc42, and more centrally there are proline-rich sequences that can interact with SH3-containing proteins such as the adaptor proteins Nck and Grb2, protein tyrosine kinases of the c-Src family such as Fyn, and the actin-binding protein profilin
p57
p59
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c189 : 1
stoichiometry:c190 : 1
stoichiometry:c191 : 1
m2602*m4135*0.1
nodelay
--
0
PMID: 11073096,9822597 Just carboxy-terminal to the EVH1 domain of WASP is the CRIB motif, which confers interaction with Cdc42, and more centrally there are proline-rich sequences that can interact with SH3-containing proteins such as the adaptor proteins Nck and Grb2, protein tyrosine kinases of the c-Src family such as Fyn, and the actin-binding protein profilin
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c13 : 1
stoichiometry:c15 : 1
stoichiometry:c17 : 1
m16*m250*0.1
nodelay
--
0
PMID: 11073096 Heterotrimeric G-proteins are made up of an {alpha}, beta, and {gamma} subunit, with the {alpha} subunit being the GDP/GTP binding module. PMID: 11073096 In the GDP-bound form, the {alpha} subunit interacts with the beta and {gamma} subunits to form an inactive heterotrimer that binds to the serpentine receptor
p57
p60
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c192 : 1
stoichiometry:c193 : 1
stoichiometry:c194 : 1
m2602*m127*0.1
nodelay
--
0
PMID: 11073096,9822597 Just carboxy-terminal to the EVH1 domain of WASP is the CRIB motif, which confers interaction with Cdc42, and more centrally there are proline-rich sequences that can interact with SH3-containing proteins such as the adaptor proteins Nck and Grb2, protein tyrosine kinases of the c-Src family such as Fyn, and the actin-binding protein profilin
p61
p61
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c195 : 1
stoichiometry:c196 : 1
stoichiometry:c197 : 1
m2602*m4169*0.1
nodelay
--
0
PMID: 11073096,9889097 The second is the A motif, which includes a cluster of acidic residues that mediate binding to the Arp2/3 complex
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c198 : 1
stoichiometry:c199 : 1
stoichiometry:c200 : 1
m5*m67*0.1
nodelay
--
0
PMID: 11073096,10224076 Rac is activated by a wide variety of tyrosine kinase receptors including the CSF-1R and serpentine receptors
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c28 : 1
stoichiometry:c30 : 1
stoichiometry:c27 : 1
stoichiometry:c19 : 1
m20*m7*0.1
nodelay
--
0
PMID: 11073096 Ligand (chemokine) binding to the receptor induces a conformational change that results in exchange of GDP for GTP on the {alpha} subunit, inducing its dissociation from both the receptor and the Gbeta{gamma} subunit.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c20 : 1
stoichiometry:c22 : 1
stoichiometry:c21 : 1
stoichiometry:c23 : 1
m20*m11*0.1
nodelay
--
0
PMID: 11073096 Ligand (chemokine) binding to the receptor induces a conformational change that results in exchange of GDP for GTP on the {alpha} subunit, inducing its dissociation from both the receptor and the Gbeta{gamma} subunit.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c24 : 1
stoichiometry:c26 : 1
stoichiometry:c25 : 1
stoichiometry:c29 : 1
m13*m20*0.1
nodelay
--
0
PMID: 11073096 Ligand (chemokine) binding to the receptor induces a conformational change that results in exchange of GDP for GTP on the {alpha} subunit, inducing its dissociation from both the receptor and the Gbeta{gamma} subunit.
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--