Original Literature | Model OverView |
---|---|
Publication
Title
Iron regulation of hepatic macrophage TNFalpha expression.
Affiliation
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and USCResearch Center for Liver Diseases, Keck School of Medicine of University ofSouthern California, Los Angeles, CA 90089, USA. htsukamo@hsc.usc.edu
Abstract
Sustained TNFalpha induction is central to the pathogenesis of chronic liverdisease including alcoholic liver disease (ALD). However, molecularunderstanding of this abnormality at the cellular level remains elusive. Redoxregulation of NF-kappaB is critical in the transcriptional control of TNFalphaexpression. Evidence supports that increased iron storage in hepatic macrophages(HM) is causally associated with accentuated and sustained NF-kappaB activationin these cells in ALD. Treatment of cultured HM with a lipophilic iron chelator(deferiprone) abrogates LPS-induced NF-kappaB activation. HM from an animalmodel of ALD have increased nonheme iron content accompanied by increasedgeneration of EPR-detected radicals, NF-kappaB activation, and TNFalphainduction, all of which are normalized by ex vivo treatment of the cells withdeferiprone. A moderate increase in the nonheme iron content in HM byerythrophagocytosis, promotes subsequent LPS-stimulated NF-kappaB activation ina hemeoxygenase-dependent manner. Recent evidence also suggests a role ofintracellular low molecular weight iron in the early signal transduction forLPS-mediated NF-kappaB activation.
PMID
11841920
|
Entity
--
e1
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane
--
--
--
csml-variable:Double
m1
0
infinite
0
--
--
e10
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytosol
--
--
--
csml-variable:Double
m10
0
infinite
0
--
LPS
--
e11
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m11
0
infinite
0
--
csml-variable:Double
m12
0
infinite
0
--
csml-variable:Double
m13
0
infinite
0
--
csml-variable:Double
m14
0
infinite
0
--
csml-variable:Double
m15
0
infinite
0
--
Iron
--
e16
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m16
0
infinite
0
--
csml-variable:Double
m17
0
infinite
0
--
csml-variable:Double
m18
0
infinite
0
--
--
e2
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m2
0
infinite
0
--
csml-variable:Double
m20
0
infinite
0
--
NFkappaB{activated}
--
e21
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m21
0
infinite
0
--
zinc protoporphyrin
--
e22
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m22
0
infinite
0
--
deferiprone
--
e23
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m23
0
infinite
0
--
csml-variable:Double
m24
0
infinite
0
--
csml-variable:Double
m25
0
infinite
0
--
NO
--
e26
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m26
0
infinite
0
--
csml-variable:Double
m27
0
infinite
0
--
IKK{activated}
--
e28
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m28
0
infinite
0
--
csml-variable:Double
m29
0
infinite
0
--
--
e3
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
--
csml-variable:Double
m3
0
infinite
0
--
iNOS{activated}
--
e30
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m30
0
infinite
0
--
csml-variable:Double
m31
0
infinite
0
--
csml-variable:Double
m32
0
infinite
0
--
NADPH oxidase{activated}
--
e33
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m33
0
infinite
0
--
O2-
--
e34
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m34
0
infinite
0
--
csml-variable:Double
m35
0
infinite
0
--
csml-variable:Double
m36
0
infinite
0
--
csml-variable:Double
m37
0
infinite
0
--
OH-
--
e38
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m38
0
infinite
0
--
H2O2
--
e39
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m39
0
infinite
0
--
--
e4
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m4
0
infinite
0
--
ONOO-
--
e40
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m40
0
infinite
0
--
csml-variable:Double
m5
0
infinite
0
--
--
e50
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelopeLumen
--
--
--
csml-variable:Double
m50
0
infinite
0
--
--
e51
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearPore
--
--
--
csml-variable:Double
m51
0
infinite
0
--
--
e52
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearInnerMembrane
--
--
--
csml-variable:Double
m52
0
infinite
0
--
--
e53
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearLumen
--
--
--
csml-variable:Double
m53
0
infinite
0
--
--
e54
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearOuterMembrane
--
--
--
csml-variable:Double
m54
0
infinite
0
--
--
e55
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleus
--
--
--
csml-variable:Double
m55
0
infinite
0
--
--
e56
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleoplasm
--
--
--
csml-variable:Double
m56
0
infinite
0
--
--
e57
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearBody
--
--
--
csml-variable:Double
m57
0
infinite
0
--
--
e58
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleolus
--
--
--
csml-variable:Double
m58
0
infinite
0
--
--
e59
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelope
--
--
--
csml-variable:Double
m59
0
infinite
0
--
csml-variable:Double
m6
0
infinite
0
--
--
e60
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Chromatin
--
--
--
csml-variable:Double
m60
0
infinite
0
--
--
e61
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearChromosome
--
--
--
csml-variable:Double
m61
0
infinite
0
--
--
e62
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearCentromere
--
--
--
csml-variable:Double
m62
0
infinite
0
--
--
e7
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell
--
--
--
csml-variable:Double
m7
0
infinite
0
--
--
e8
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell_WithoutCellWall_
--
--
--
csml-variable:Double
m8
0
infinite
0
--
--
e9
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytoplasm
--
--
--
csml-variable:Double
m9
0
infinite
0
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c1 : 1
stoichiometry:c20 : 1
stoichiometry:c3 : 1
m11*0.1
nodelay
--
0
PMID: 11841920 Addition of LPS to cultured HM results in induced expression of TNF-alpha with its mRNA and protein expression peaking at 2?4 and 6?8 h, respectively. PMID: 11841920, 8386517 IL-10 inhibits TNF-alpha expression at both transcriptional and posttranscriptional levels.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c57 : 1
stoichiometry:c58 : 1
stoichiometry:c59 : 1
m34*m36*0.1
nodelay
--
0
PMID: 11841920 iron may be released from ferritin via reduction of iron by O2-.
p11
p11
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c26 : 1
stoichiometry:c31 : 1
stoichiometry:c21 : 1
stoichiometry:c35 : 1
stoichiometry:c27 : 1
m20*m16*0.1
nodelay
--
0
PMID: 11841920 increased iron content may promote NF-kappaB activation and TNF-alpha expression. PMID: 11841920 When the cells were pretreated with deferiprone, both the transient rise of iron and NF-kappaB activation were abrogated. PMID: 11841920, 9710205, 8626684 In fact, low, physiological concentrations of NO are known to increase TNFalpha- or PMA-induced IKK activity, NF-kappaB binding, and promoter transactivation even though high pharmacological concentrations suppress activation of NF-kappaB.
p12
p12
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c24 : 1
stoichiometry:c30 : 1
stoichiometry:c28 : 1
stoichiometry:c29 : 1
stoichiometry:c36 : 1
stoichiometry:c37 : 1
stoichiometry:c25 : 1
m20*m11*0.1
nodelay
--
0
PMID: 11841920, 10600822 LPS treatment results in accentuated NF-kappaB activation, the effect which is abrogated by zinc protoporphyrin, a hemeoxygenase inhibitor. iNOS abolishes LPS-mediated transient rise in LMW iron and NF-kappaB activation. PMID: 11841920 When the cells were pretreated with deferiprone, both the transient rise of iron and NF-kappaB activation were abrogated. PMID: 11841920, 9710205, 8626684 In fact, low, physiological concentrations of NO are known to increase TNFalpha- or PMA-induced IKK activity, NF-kappaB binding, and promoter transactivation even though high pharmacological concentrations suppress activation of NF-kappaB.
p15
p15
cso30:i:ME_ChangeInMaterialConcentration
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c38 : 1
stoichiometry:c32 : 1
stoichiometry:c5 : 1
stoichiometry:c39 : 1
m11*0.1
nodelay
--
0
PMID: 11841920 This study demonstrated a transient rise in the intracellular chelatable pool of iron at 10 min following LPS stimulation. iNOS abolishes LPS-mediated transient rise in LMW iron and NF-kappaB activation. PMID: 11841920 When the cells were pretreated with deferiprone, both the transient rise of iron and NF-kappaB activation were abrogated.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c40 : 1
stoichiometry:c41 : 1
stoichiometry:c42 : 1
stoichiometry:c43 : 1
m24*m16*m11*0.1
nodelay
--
0
PMID: 118420, 2153975, 2154196 formation of nonheme iron-nitrosyl complex was previously demonstrated in LPS-stimulated macrophages.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c44 : 1
stoichiometry:c50 : 1
stoichiometry:c45 : 1
m29*m6*0.1
nodelay
--
0
PMID: 11841920, 9710205 In fact, low, physiological concentrations of NO are known to increase TNF-alpha- or PMA-induced IKK activity, NF-kappaB binding.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c46 : 1
stoichiometry:c51 : 1
stoichiometry:c47 : 1
m29*m27*0.1
nodelay
--
0
PMID: 11841920, 9710205 In fact, low, physiological concentrations of NO are known to increase TNF-alpha- or PMA-induced IKK activity, NF-kappaB binding.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c48 : 1
stoichiometry:c18 : 1
stoichiometry:c49 : 1
m29*m26*0.1
nodelay
--
0
PMID: 11841920, 9710205 In fact, low, physiological concentrations of NO are known to increase TNF-alpha- or PMA-induced IKK activity, NF-kappaB binding.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c2 : 1
stoichiometry:c4 : 1
m11*0.1
nodelay
--
0
PMID: 11841920 Addition of LPS to cultured HM results in induced expression of TNF-alpha with its mRNA and protein expression peaking at 2?4 and 6?8 h, respectively. Induction of IL-10 lags slightly behind that of TNF-alpha.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c60 : 1
stoichiometry:c82 : 1
stoichiometry:c77 : 1
m36*m38*0.1
nodelay
--
0
PMID: 11841920 iron may be released from ferritin via reduction of iron by O2- or oxidative destruction of ferritin proteins by OH.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c83 : 1
stoichiometry:c85 : 1
stoichiometry:c84 : 1
m39*m16*0.1
nodelay
--
0
PMID: 11841920, 9512778, 10391125, 10678585 iron may produce OH from H2O2 generated from O2-.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c64 : 1
stoichiometry:c66 : 1
stoichiometry:c65 : 1
m31*m11*0.1
nodelay
--
0
PMID: 11841920 LPS stimulates activities of iNOS and NADPH oxidase.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c67 : 1
stoichiometry:c69 : 1
stoichiometry:c68 : 1
m32*m11*0.1
nodelay
--
0
PMID: 11841920 LPS stimulates activities of iNOS and NADPH oxidase.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c86 : 1
stoichiometry:c87 : 1
m30*0.1
nodelay
--
0
PMID: 11841920 LPS stimulates activities of iNOS and NADPH oxidase resulting in generation of NO and O2-.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c72 : 1
stoichiometry:c73 : 1
m33*0.1
nodelay
--
0
PMID: 11841920 LPS stimulates activities of iNOS and NADPH oxidase resulting in generation of NO and O2-.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c74 : 1
stoichiometry:c13 : 1
stoichiometry:c75 : 1
stoichiometry:c33 : 1
m35*m26*0.1
nodelay
--
0
PMID: 11841920, 7557022 NO may target and release iron sulfur clusters from enzymes containing them. One such enzyme is iron regulatory protein-1 (IRP-1).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c78 : 1
stoichiometry:c17 : 1
stoichiometry:c79 : 1
m29*m16*0.1
nodelay
--
0
PMID: 11841920 A transiently raised LMW-iron may directly provide redox modifications of signaling proteins for IKK activation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c80 : 1
stoichiometry:c81 : 1
stoichiometry:c34 : 1
m37*0.1
nodelay
--
0
PMID: 11841920, 7557022 NO may target and release iron sulfur clusters from enzymes containing them. One such enzyme is iron regulatory protein-1 (IRP-1).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c88 : 1
stoichiometry:c90 : 1
stoichiometry:c89 : 1
m5*m11*0.1
nodelay
--
0
PMID: 11841920 Addition of LPS to cultured HM results in induced expression of TNF-alpha with its mRNA and protein expression peaking at 2?4 and 6?8 h, respectively.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c91 : 1
stoichiometry:c92 : 1
m34*0.1
nodelay
--
0
PMID: 11841920, 9512778, 10391125, 10678585 iron may produce OH from H2O2 generated from O2-.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c14 : 1
stoichiometry:c95 : 1
m26*0.1
nodelay
--
0
PMID: 11841920 OH is also produced from ONOO- generated from NO and O2.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c97 : 1
stoichiometry:c96 : 1
m40*0.1
nodelay
--
0
PMID: 11841920 OH is also produced from ONOO- generated from NO and O2.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c98 : 1
stoichiometry:c99 : 1
m34*0.1
nodelay
--
0
PMID: 11841920 OH is also produced from ONOO- generated from NO and O2.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c7 : 1
stoichiometry:c11 : 1
stoichiometry:c8 : 1
m12*m16*0.1
nodelay
--
0
PMID: 11841920, 9180188 Iron overloading in mice causes suppressed candidacidal activity by macrophages and reduced release of NO and IL-12 and enhanced production of IL-4 and IL-10 by splenic CD4+ T cells.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c9 : 1
stoichiometry:c12 : 1
stoichiometry:c10 : 1
m13*m16*0.1
nodelay
--
0
PMID: 11841920, 9180188 Iron overloading in mice causes suppressed candidacidal activity by macrophages and reduced release of NO and IL-12 and enhanced production of IL-4 and IL-10 by splenic CD4+ T cells.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c23 : 1
stoichiometry:c19 : 1
stoichiometry:c22 : 1
m16*0.1
nodelay
--
0
PMID: 11841920 increased iron content may promote NF-kappaB activation and TNF-alpha expression.
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
1
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
1
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--