Original Literature | Model OverView |
---|---|
Publication
Title
Macrophage migration inhibitory factor and host innate immune responses tomicrobes.
Affiliation
Division of infectious Diseases, Department of Internal Medicine, CentreHospitalier Universitaire Vaudois, Lausanne, Switzerland.Thierry.Calandra@chuv.hospvd.ch
Abstract
Among innate immune cells, macrophages play an essential role in the sensing andelimination of invasive microorganisms. Binding of microbial products topathogen-recognition receptors stimulates macrophages to release cytokines andother effector molecules that orchestrate the host innate and adaptive immuneresponses. Recently, the protein known as macrophage migration inhibitory factor(MIF) has emerged as a pivotal mediator of innate immunity. First identified asa T-cell cytokine, MIF was rediscovered as a protein released by pituitary cellsafter exposure to endotoxin [lipopolysaccharide (LPS)] or bacteria and inresponse to stress. Monocytes, macrophages and lymphocytes constitutivelyexpress MIF, which is rapidly released after stimulation with bacterialendotoxins and exotoxins, and cytokines. MIF induces powerful proinflammatorybiological responses and has been shown to be an important effector molecule ofseptic shock. High levels of MIF have been detected in the circulation ofpatients with severe sepsis and septic shock. Inhibition of MIF activity withneutralizing anti-MIF antibodies or deletion of the Mif gene led to a markedreduction in cytokine production and protected mice from lethal bacterial sepsisand toxic shock induced by Gram-negative endotoxin or Gram-positive exotoxins.Investigations into the mechanisms whereby MIF modulates innate immune responsesto endotoxin and Gram-negative bacteria have shown that MIF up-regulates theexpression of Toll-like receptor 4 (TLR4), the signal-transducing molecule ofthe LPS receptor complex. Thus, MIF enables cells, such as the macrophage, thatare at the forefront of the host antimicrobial defences, to sense promptly thepresence of invading Gram-negative bacteria and mount an innate immune response.Given that it is a pivotal regulator of innate immune responses to bacterialinfections, MIF appears to be a perfect target for novel therapeuticinterventions in patients with severe sepsis.
PMID
14620137
|
Entity
--
e1
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane
--
--
--
csml-variable:Double
m1
0
infinite
0
--
--
e10
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytosol
--
--
--
csml-variable:Double
m10
0
infinite
0
--
MIF mRNA
--
e11
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m11
0
infinite
0
--
LPS:TLR4
--
e12
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m12
0
infinite
0
--
MIF
--
e13
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m13
0
infinite
0
--
Gram negative
--
e14
cso30:c:Cell
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m14
0
infinite
0
--
Gram positive
--
e15
cso30:c:Cell
cso30:i:CC_Extracellular
--
csml-variable:Double
m15
0
infinite
0
--
TSST-1
--
e16
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m16
0
infinite
0
--
SPEA
--
e17
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m17
0
infinite
0
--
Mycobacteria
--
e18
cso30:c:Cell
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m18
0
infinite
0
--
Malaria pigment
--
e19
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m19
0
infinite
0
--
--
e2
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m2
0
infinite
0
--
TNF-alpha receptor
--
e20
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m20
0
infinite
0
--
TNF-alpha
--
e21
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m21
0
infinite
0
--
TNF-alpha:receptor
--
e22
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
csml-variable:Double
m22
0
infinite
0
--
IFN-gamma
--
e23
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m23
0
infinite
0
--
IFN-gamma receptor
--
e24
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m24
0
infinite
0
--
Dexamethasone
--
e25
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m25
0
infinite
0
--
csml-variable:Double
m26
0
infinite
0
--
tlr4
--
e27
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m27
0
infinite
0
--
ERK-1
--
e28
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m28
0
infinite
0
--
ERK-1{active}
--
e29
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m29
0
infinite
0
--
--
e3
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
--
csml-variable:Double
m3
0
infinite
0
--
ERK-2
--
e30
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m30
0
infinite
0
--
ERK-2{active}
--
e31
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m31
0
infinite
0
--
PU.1
--
e32
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m32
0
infinite
0
--
TLR2
--
e33
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
csml-variable:Double
m33
0
infinite
0
--
Gram positive:TLR2
--
e34
cso30:c:Cell
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
csml-variable:Double
m34
0
infinite
0
--
Glucocorticoid
--
e35
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m35
0
infinite
0
--
receptor
--
e36
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
csml-variable:Double
m36
0
infinite
0
--
glucocorticoid:receptor
--
e37
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m37
0
infinite
0
--
cytokines
--
e38
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m38
0
infinite
0
--
cytokines
--
e39
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m39
0
infinite
0
--
--
e4
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m4
0
infinite
0
--
cortisol
--
e40
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m40
0
infinite
0
--
receptor
--
e41
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m41
0
infinite
0
--
dexamethasone:receptor
--
e42
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m42
0
infinite
0
--
receptor
--
e43
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m43
0
infinite
0
--
cortisol:receptor
--
e44
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m44
0
infinite
0
--
PKA{active}
--
e45
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m45
0
infinite
0
--
PKA
--
e46
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m46
0
infinite
0
--
fibroblasts
--
e47
cso30:c:Cell
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m47
0
infinite
0
--
CPLA2
--
e48
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m48
0
infinite
0
--
CPLA2{active}
--
e49
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m49
0
infinite
0
--
LPS
--
e5
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m5
0
infinite
0
--
--
e50
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelopeLumen
--
--
--
csml-variable:Double
m50
0
infinite
0
--
--
e51
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearPore
--
--
--
csml-variable:Double
m51
0
infinite
0
--
--
e52
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearInnerMembrane
--
--
--
csml-variable:Double
m52
0
infinite
0
--
--
e53
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearLumen
--
--
--
csml-variable:Double
m53
0
infinite
0
--
--
e54
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearOuterMembrane
--
--
--
csml-variable:Double
m54
0
infinite
0
--
--
e55
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleus
--
--
--
csml-variable:Double
m55
0
infinite
0
--
--
e56
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleoplasm
--
--
--
csml-variable:Double
m56
0
infinite
0
--
--
e57
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearBody
--
--
--
csml-variable:Double
m57
0
infinite
0
--
--
e58
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleolus
--
--
--
csml-variable:Double
m58
0
infinite
0
--
--
e59
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelope
--
--
--
csml-variable:Double
m59
0
infinite
0
--
TLR4
--
e6
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
csml-variable:Double
m6
0
infinite
0
--
--
e60
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Chromatin
--
--
--
csml-variable:Double
m60
0
infinite
0
--
--
e61
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearChromosome
--
--
--
csml-variable:Double
m61
0
infinite
0
--
--
e62
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearCentromere
--
--
--
csml-variable:Double
m62
0
infinite
0
--
arachidonic acid
--
e63
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m63
0
infinite
0
--
prostaglandins
--
e64
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m64
0
infinite
0
--
Leukotrines
--
e65
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m65
0
infinite
0
--
cyclooxygenase-2
--
e66
cso30:c:Protein
cso30:i:CC_Cell_WithoutCellWall_
--
--
csml-variable:Double
m66
0
infinite
0
--
cyclooxygenase-2{active}
--
e67
cso30:c:Protein
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m67
0
infinite
0
--
PGE2
--
e68
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m68
0
infinite
0
--
--
e7
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell
--
--
--
csml-variable:Double
m7
0
infinite
0
--
MIF
--
e70
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m70
0
infinite
0
--
Jab-1/CSN5
--
e71
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m71
0
infinite
0
--
MIF:Jab-1/CSN5
--
e72
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m72
0
infinite
0
--
AP-1
--
e73
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m73
0
infinite
0
--
AP-1{active}
--
e74
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m74
0
infinite
0
--
--
e8
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell_WithoutCellWall_
--
--
--
csml-variable:Double
m8
0
infinite
0
--
--
e9
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytoplasm
--
--
--
csml-variable:Double
m9
0
infinite
0
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c1 : 1
stoichiometry:c2 : 1
stoichiometry:c3 : 1
m5*m6*0.1
nodelay
--
0
PMID: 14620137 The impaired capacity of MIF-deficient macrophages to respond to LPS was shown to be due to reduced expression of TLR4, the signal-transducing molecule of the LPS receptor complex.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c20 : 1
stoichiometry:c25 : 1
stoichiometry:c30 : 1
m11*m17*0.1
nodelay
--
0
PMID: 14620137, 8195715, 9736745, 10722628 Gram-negative and Gram-positive bacteria, bacterial endotoxin (LPS) and exotoxins [toxic shock syndrome toxin-1 (TSST-1) and streptococcal pyrogenic exotoxin A (SPEA)], mycobacteria, malaria pigment and proinflammatory cytokines [tumour necrosis factor-a (TNF-a) and interferon-g (IFN-g) have been found to induce macrophages to release MIF (12-14).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c21 : 1
stoichiometry:c26 : 1
stoichiometry:c31 : 1
m11*m18*0.1
nodelay
--
0
PMID: 14620137, 8195715, 9736745, 10722628 Gram-negative and Gram-positive bacteria, bacterial endotoxin (LPS) and exotoxins [toxic shock syndrome toxin-1 (TSST-1) and streptococcal pyrogenic exotoxin A (SPEA)], mycobacteria, malaria pigment and proinflammatory cytokines [tumour necrosis factor-a (TNF-a) and interferon-g (IFN-g) have been found to induce macrophages to release MIF (12-14).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c32 : 1
stoichiometry:c33 : 1
stoichiometry:c34 : 1
m11*m19*0.1
nodelay
--
0
PMID: 14620137, 8195715, 9736745, 10722628 Gram-negative and Gram-positive bacteria, bacterial endotoxin (LPS) and exotoxins [toxic shock syndrome toxin-1 (TSST-1) and streptococcal pyrogenic exotoxin A (SPEA)], mycobacteria, malaria pigment and proinflammatory cytokines [tumour necrosis factor-a (TNF-a) and interferon-g (IFN-g) have been found to induce macrophages to release MIF (12-14).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c35 : 1
stoichiometry:c36 : 1
m13*0.1
nodelay
--
0
PMID: 14620137 MIF has been shown to up-regulate TLR4 expression, to counter-regulate the immunosuppressive effects of glucocorticoids, to activate the extracellular signal-regulated kinase- 1/2 (ERK-1/2), to suppress p53 activity and to inhibit Jab-1/ CSN5 activity.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c37 : 1
stoichiometry:c38 : 1
stoichiometry:c72 : 1
stoichiometry:c39 : 1
m13*m28*m45*0.1
nodelay
--
0
PMID: 14620137 MIF has been shown to up-regulate TLR4 expression, to counter-regulate the immunosuppressive effects of glucocorticoids, to activate the extracellular signal-regulated kinase- 1/2 (ERK-1/2), to suppress p53 activity and to inhibit Jab-1/ CSN5 activity. ERK-1/2 activation by MIF requires protein kinase A activation and results in the augmentation of cytoplasmic phospholipase A2 (cPLA2) activity and ensuing production of arachidonic acid, prostaglandins and leukotrienes. The protection afforded by MIF against apoptosis was found to require the sequential activation of ERK-1/2, cPLA2, cyclooxygenase-2 and prostaglandin E2.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c40 : 1
stoichiometry:c41 : 1
stoichiometry:c71 : 1
stoichiometry:c42 : 1
m13*m30*m45*0.1
nodelay
--
0
PMID: 14620137 MIF has been shown to up-regulate TLR4 expression, to counter-regulate the immunosuppressive effects of glucocorticoids, to activate the extracellular signal-regulated kinase- 1/2 (ERK-1/2), to suppress p53 activity and to inhibit Jab-1/ CSN5 activity. ERK-1/2 activation by MIF requires protein kinase A activation and results in the augmentation of cytoplasmic phospholipase A2 (cPLA2) activity and ensuing production of arachidonic acid, prostaglandins and leukotrienes. The protection afforded by MIF against apoptosis was found to require the sequential activation of ERK-1/2, cPLA2, cyclooxygenase-2 and prostaglandin E2.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c43 : 1
stoichiometry:c44 : 1
m32*0.1
nodelay
--
0
PMID: 14620137, 10734131 Transcription of the human Tlr4 gene was shown to be dependent on the activity of PU.1, a member of the Ets family of transcription factors (16).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c45 : 1
stoichiometry:c46 : 1
stoichiometry:c47 : 1
m15*m33*0.1
nodelay
--
0
PMID: 14620137 By contrast, expression of TLR2, a member of the TLR family of pattern-recognition receptors involved in the recognition of Gram-positive bacteria, was unchanged in MIF-deficient macrophages, as one might have predicted given the normal responses of these cells to Gram-positive bacteria and yeast particles.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c48 : 1
stoichiometry:c49 : 1
stoichiometry:c50 : 1
m35*m36*0.1
nodelay
--
0
PMID: 14620137 Glucocorticoids bind the corresponding receptors. Classically, glucocorticoids suppress cytokine production by immune cells.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c51 : 1
stoichiometry:c53 : 1
stoichiometry:c52 : 1
m38*0.1
nodelay
--
0
PMID: 14620137 Classically, glucocorticoids suppress cytokine production by immune cells.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c4 : 1
stoichiometry:c6 : 1
stoichiometry:c5 : 1
m11*m12*0.1
nodelay
--
0
PMID: 14620137, 9006339 Systemic administration of LPS causes a rapid release of MIF from essentially all tissues, leading to profound depletion of the cellular pools of MIF, which are quickly restored by a robust induction of MIF mRNA and de novo synthesis of the MIF protein
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c54 : 1
stoichiometry:c62 : 1
stoichiometry:c55 : 1
m37*m11*0.1
nodelay
--
0
PMID: 14620137, 7659164, 8755565, 10446857 By contrast, MIF production was induced when cells were exposed to low concentrations of glucocorticoids (17-19)
p21
p21
cso30:i:ME_Binding
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c56 : 1
stoichiometry:c57 : 1
stoichiometry:c58 : 1
m25*m41*0.1
nodelay
--
0
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c59 : 1
stoichiometry:c61 : 1
stoichiometry:c60 : 1
m11*m42*0.1
nodelay
--
0
PMID: 14620137 As observed with many stimuli, MIF release in response to dexamethasone or cortisol was bell-shaped
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c63 : 1
stoichiometry:c64 : 1
stoichiometry:c65 : 1
m40*m43*0.1
nodelay
--
0
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c66 : 1
stoichiometry:c67 : 1
stoichiometry:c68 : 1
m44*m11*0.1
nodelay
--
0
PMID: 14620137 As observed with many stimuli, MIF release in response to dexamethasone or cortisol was bell-shaped
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c69 : 1
stoichiometry:c70 : 1
m46*0.1
nodelay
--
0
PMID: 14620137 ERK-1/2 activation by MIF requires protein kinase A activation and results in the augmentation of cytoplasmic phospholipase A2 (cPLA2) activity and ensuing production of arachidonic acid, prostaglandins and leukotrienes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c73 : 1
stoichiometry:c74 : 1
m13*0.1
nodelay
--
0
PMID: 14620137, 10364264 MIF was found to induce rapid and sustained activation of the ERK-1/2 mitogen-activated protein kinase pathway and proliferation of quiescent fibroblasts (21)
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c75 : 1
stoichiometry:c77 : 1
stoichiometry:c76 : 1
m48*m31*0.1
nodelay
--
0
PMID: 14620137, 10364264 ERK-1/2 activation by MIF requires protein kinase A activation and results in the augmentation of cytoplasmic phospholipase A2 (cPLA2) activity and ensuing production of arachidonic acid, prostaglandins and leukotrienes. ERK-1/2-mediated induction of cPLA2 is one mechanism whereby MIF could override the inhibitory effects of steroids on synthesis of arachidonic acid induced by proinflammatory stimuli (21). The protection afforded by MIF against apoptosis was found to require the sequential activation of ERK-1/2, cPLA2, cyclooxygenase-2 and prostaglandin E2.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c78 : 1
stoichiometry:c79 : 1
stoichiometry:c80 : 1
m29*m48*0.1
nodelay
--
0
PMID: 14620137, 10364264 ERK-1/2 activation by MIF requires protein kinase A activation and results in the augmentation of cytoplasmic phospholipase A2 (cPLA2) activity and ensuing production of arachidonic acid, prostaglandins and leukotrienes. ERK-1/2-mediated induction of cPLA2 is one mechanism whereby MIF could override the inhibitory effects of steroids on synthesis of arachidonic acid induced by proinflammatory stimuli (21). The protection afforded by MIF against apoptosis was found to require the sequential activation of ERK-1/2, cPLA2, cyclooxygenase-2 and prostaglandin E2.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c81 : 1
stoichiometry:c82 : 1
m49*0.1
nodelay
--
0
PMID: 14620137, 10364264 ERK-1/2 activation by MIF requires protein kinase A activation and results in the augmentation of cytoplasmic phospholipase A2 (cPLA2) activity and ensuing production of arachidonic acid, prostaglandins and leukotrienes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c7 : 1
stoichiometry:c8 : 1
m12*0.1
nodelay
--
0
PMID: 14620137, 9006339 Systemic administration of LPS causes a rapid release of MIF from essentially all tissues, leading to profound depletion of the cellular pools of MIF, which are quickly restored by a robust induction of MIF mRNA and de novo synthesis of the MIF protein
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c83 : 1
stoichiometry:c85 : 1
m63*0.1
nodelay
--
0
PMID: 14620137, 10364264 ERK-1/2 activation by MIF requires protein kinase A activation and results in the augmentation of cytoplasmic phospholipase A2 (cPLA2) activity and ensuing production of arachidonic acid, prostaglandins and leukotrienes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c84 : 1
stoichiometry:c86 : 1
m63*0.1
nodelay
--
0
PMID: 14620137, 10364264 ERK-1/2 activation by MIF requires protein kinase A activation and results in the augmentation of cytoplasmic phospholipase A2 (cPLA2) activity and ensuing production of arachidonic acid, prostaglandins and leukotrienes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c87 : 1
stoichiometry:c88 : 1
stoichiometry:c89 : 1
m49*m66*0.1
nodelay
--
0
PMID: 14620137 The protection afforded by MIF against apoptosis was found to require the sequential activation of ERK-1/2, cPLA2, cyclooxygenase-2 and prostaglandin E2.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c90 : 1
stoichiometry:c91 : 1
m67*0.1
nodelay
--
0
PMID: 14620137 The protection afforded by MIF against apoptosis was found to require the sequential activation of ERK-1/2, cPLA2, cyclooxygenase-2 and prostaglandin E2.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c93 : 1
stoichiometry:c94 : 1
stoichiometry:c95 : 1
m71*m70*0.1
nodelay
--
0
PMID: 14620137 It revealed that MIF binds to Jab-1/CSN5 (for Jun activation domain-binding protein-1 and subunit 5 of the COP9 signalosome).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c96 : 1
stoichiometry:c97 : 1
stoichiometry:c99 : 1
stoichiometry:c98 : 1
m71*m73*0.1
nodelay
--
0
PMID: 14620137, 11089976 Jab1/ CSN5 is a co-activator of the transcription factor activator protein-1 (AP-1), which is implicated in cell growth, transformation and death. Therefore, MIF inhibits the positive regulatory effects of Jab1/CSN5 on AP-1 and JNK activities (24).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c9 : 1
stoichiometry:c10 : 1
m11*0.1
nodelay
--
0
PMID: 14620137, 9006339 Systemic administration of LPS causes a rapid release of MIF from essentially all tissues, leading to profound depletion of the cellular pools of MIF, which are quickly restored by a robust induction of MIF mRNA and de novo synthesis of the MIF protein
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c11 : 1
stoichiometry:c12 : 1
stoichiometry:c13 : 1
m20*m21*0.1
nodelay
--
0
PMID: 14620137 TNF-alpha binds its respective receptor.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c14 : 1
stoichiometry:c15 : 1
stoichiometry:c16 : 1
m24*m23*0.1
nodelay
--
0
PMID: 14620137 IFN-gamma binds its corresponding receptor.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c17 : 1
stoichiometry:c22 : 1
stoichiometry:c27 : 1
m11*m14*0.1
nodelay
--
0
PMID: 14620137, 8195715, 9736745, 10722628 Gram-negative and Gram-positive bacteria, bacterial endotoxin (LPS) and exotoxins [toxic shock syndrome toxin-1 (TSST-1) and streptococcal pyrogenic exotoxin A (SPEA)], mycobacteria, malaria pigment and proinflammatory cytokines [tumour necrosis factor-a (TNF-a) and interferon-g (IFN-g) have been found to induce macrophages to release MIF (12-14).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c18 : 1
stoichiometry:c23 : 1
stoichiometry:c28 : 1
m11*m15*0.1
nodelay
--
0
PMID: 14620137, 8195715, 9736745, 10722628 Gram-negative and Gram-positive bacteria, bacterial endotoxin (LPS) and exotoxins [toxic shock syndrome toxin-1 (TSST-1) and streptococcal pyrogenic exotoxin A (SPEA)], mycobacteria, malaria pigment and proinflammatory cytokines [tumour necrosis factor-a (TNF-a) and interferon-g (IFN-g) have been found to induce macrophages to release MIF (12-14).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c19 : 1
stoichiometry:c24 : 1
stoichiometry:c29 : 1
m11*m16*0.1
nodelay
--
0
PMID: 14620137, 8195715, 9736745, 10722628 Gram-negative and Gram-positive bacteria, bacterial endotoxin (LPS) and exotoxins [toxic shock syndrome toxin-1 (TSST-1) and streptococcal pyrogenic exotoxin A (SPEA)], mycobacteria, malaria pigment and proinflammatory cytokines [tumour necrosis factor-a (TNF-a) and interferon-g (IFN-g) have been found to induce macrophages to release MIF (12-14).
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--