Original Literature | Model OverView |
---|---|
Publication
Title
NF-kappaB activation by reactive oxygen species: fifteen years later.
Affiliation
Center for Biomedical Integrated Genoproteomics (CBIG), Virology and ImmunologyUnit, University of Liege, 4000 Liege, Belgium.
Abstract
The transcription factor NF-kappaB plays a major role in coordinating innate andadaptative immunity, cellular proliferation, apoptosis and development. Sincethe discovery in 1991 that NF-kappaB may be activated by H(2)O(2), severallaboratories have put a considerable effort into dissecting the molecularmechanisms underlying this activation. Whereas early studies revealed anatypical mechanism of activation, leading to IkappaBalpha Y42 phosphorylationindependently of IkappaB kinase (IKK), recent findings suggest that H(2)O(2)activates NF-kappaB mainly through the classical IKK-dependent pathway. Themolecular mechanisms leading to IKK activation are, however, cell-type specificand will be presented here. In this review, we also describe the effect of otherROS (HOCl and (1)O(2)) and reactive nitrogen species on NF-kappaB activation.Finally, we critically review the recent data highlighting the role of ROS inNF-kappaB activation by proinflammatory cytokines (TNF-alpha and IL-1beta) andlipopolysaccharide (LPS), two major components of innate immunity.
PMID
16723122
|
Entity
Process
p38{active}
--
MO000000022
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m130
10
infinite
0
TRANSPATH | MO000000022 |
--
p52
--
MO000000196
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m168
10
infinite
0
TRANSPATH | MO000000196 |
--
p100
--
MO000000202
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m173
10
infinite
0
TRANSPATH | MO000000202 |
--
NIK
--
MO000000203
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m174
10
infinite
0
InterPro | IPR000719 |
TRANSPATH | MO000000203 |
--
IKK-alpha
--
MO000000210
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m181
10
infinite
0
InterPro | IPR000719 |
TRANSPATH | MO000000210 |
--
TRAF6
--
MO000000212
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m183
10
infinite
0
InterPro | IPR001841 |
TRANSPATH | MO000000212 |
--
IKK
--
MO000000248
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m207
10
infinite
0
TRANSPATH | MO000000248 |
--
IKK-gamma
--
MO000016599
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m1593
10
infinite
0
InterPro | IPR007087 |
TRANSPATH | MO000016599 |
--
PtdIns{p}
--
MO000017583
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m347277
10
infinite
0
TRANSPATH | MO000017583 |
--
LPS:LBP:CD14
--
MO000021929
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m6255
10
infinite
0
TRANSPATH | MO000021929 |
--
--
e1
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane
--
--
--
csml-variable:Double
m1
0
infinite
0
--
TNFR:TNF-alpha:TRADD:TRAF:RIP1
--
e100
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m101
0
infinite
0
--
TNFR:TNF-alpha:TRADD:TRAF:RIP1:nemo
--
e101
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m102
0
infinite
0
--
NAC
--
e102
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m103
0
infinite
0
--
PTDC
--
e103
cso30:c:SmallMolecule
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m104
0
infinite
0
--
IL-1R
--
e104
cso30:c:Protein
cso30:i:CC_Cell_WithoutCellWall_
--
--
csml-variable:Double
m105
0
infinite
0
--
Il-1:Il-1R
--
e105
cso30:c:Complex
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m106
0
infinite
0
--
MEKK7
--
e107
cso30:c:Protein
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m108
0
infinite
0
--
MEKK7{inactive}
--
e108
cso30:c:Protein
cso30:i:CC_Cell_WithoutCellWall_
--
--
csml-variable:Double
m109
0
infinite
0
--
GADD45beta
--
e109
cso30:c:Protein
cso30:i:CC_Cell_WithoutCellWall_
--
--
csml-variable:Double
m110
0
infinite
0
--
phagocytic NADPH oxidases
--
e11
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m11
0
infinite
0
--
ROS
--
e111
cso30:c:SmallMolecule
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m113
0
infinite
0
--
LPS:TLR4:MyD88
--
e112
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m114
0
infinite
0
--
LPS:TLR4:MyD88:IRAK
--
e113
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
csml-variable:Double
m115
0
infinite
0
--
LPS:TLR4:MyD88:IRAK:TRAF6
--
e114
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
csml-variable:Double
m116
0
infinite
0
--
LPS:TLR4:MyD88:IRAK:TRAF6:Nox4
--
e115
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
csml-variable:Double
m117
0
infinite
0
--
alpha-octopherol
--
e116
cso30:c:SmallMolecule
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
csml-variable:Double
m118
0
infinite
0
--
DMSO
--
e117
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m119
0
infinite
0
--
MAPK phosphatases
--
e118
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m120
10
infinite
0
TRANSPATH | MO000017179 |
--
MAPK phosphatases{oxidized}
--
e119
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m121
10
infinite
0
TRANSPATH | MO000017179 |
--
Non-phagocytic oxidases
--
e12
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m12
0
infinite
0
--
MAPK phosphatases{oxidized}{ub}
--
e120
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m122
10
infinite
0
TRANSPATH | MO000017179 |
--
ASK1:TRAF6
--
e126
cso30:c:Complex
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m129
0
infinite
0
--
Myeloperoxidase
--
e13
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m13
0
infinite
0
--
BHA
--
e14
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m14
0
infinite
0
--
NF-KappaB
--
e15
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m15
0
infinite
0
--
NF-KappaB:IKappaB
--
e16
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m16
0
infinite
0
--
IKappaB
--
e17
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m17
0
infinite
0
--
TNF-alphaR
--
e18
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m18
0
infinite
0
--
TNF-alpha:TNF-alphaR
--
e19
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m19
0
infinite
0
--
--
e2
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m2
0
infinite
0
--
IL-1betaR
--
e20
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m20
0
infinite
0
--
IL-1beta:IL-1betaR
--
e21
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m21
0
infinite
0
--
TLRs
--
e22
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m22
0
infinite
0
--
PAMPs
--
e23
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m23
0
infinite
0
--
TLRs:PAMPs
--
e24
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m24
0
infinite
0
--
T-cell antigen
--
e25
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m25
0
infinite
0
--
B-cell antigen
--
e26
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m26
0
infinite
0
--
T-cell antigen:TCR
--
e27
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m27
0
infinite
0
--
B-cell antigen:BCR
--
e28
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m28
0
infinite
0
--
IKK{p}
--
e29
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m29
10
infinite
0
TRANSPATH | MO000000248 |
--
--
e3
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
--
csml-variable:Double
m3
0
infinite
0
--
NF-KappaB:IKappaB{p}
--
e30
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m30
0
infinite
0
--
NF-KappaB:IKappaB{p}{ub}
--
e31
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m31
0
infinite
0
--
degradants
--
e32
cso30:c:EntityBiological
cso30:i:CC_Cytosol
--
csml-variable:Double
m32
0
infinite
0
--
NF-KappaB
--
e33
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m33
0
infinite
0
--
cytokines
--
e34
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m34
0
infinite
0
--
chemokines
--
e35
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m35
0
infinite
0
--
adhesion molecules
--
e36
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m36
0
infinite
0
--
inhibitors of apoptosis
--
e37
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m37
0
infinite
0
--
BAFF
--
e38
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m38
0
infinite
0
--
Lymphotoxin beta
--
e39
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m39
0
infinite
0
--
--
e4
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m4
0
infinite
0
--
CD40
--
e40
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m40
0
infinite
0
--
RelB:p52
--
e41
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m41
0
infinite
0
--
RelB:p52
--
e42
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m42
0
infinite
0
--
csml-variable:Double
m43
0
infinite
0
--
csml-variable:Double
m44
0
infinite
0
--
H2O2
--
e45
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m45
0
infinite
0
--
Bfl-1
--
e46
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m46
0
infinite
0
--
calpain
--
e47
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m47
0
infinite
0
--
pervanadate
--
e48
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m48
0
infinite
0
--
IKK{active}
--
e49
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m49
10
infinite
0
TRANSPATH | MO000000248 |
--
lipoxygenases
--
e5
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m5
0
infinite
0
--
--
e50
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelopeLumen
--
--
--
csml-variable:Double
m50
0
infinite
0
--
--
e51
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearPore
--
--
--
csml-variable:Double
m51
0
infinite
0
--
--
e52
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearInnerMembrane
--
--
--
csml-variable:Double
m52
0
infinite
0
--
--
e53
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearLumen
--
--
--
csml-variable:Double
m53
0
infinite
0
--
--
e54
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearOuterMembrane
--
--
--
csml-variable:Double
m54
0
infinite
0
--
--
e55
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleus
--
--
--
csml-variable:Double
m55
0
infinite
0
--
--
e56
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleoplasm
--
--
--
csml-variable:Double
m56
0
infinite
0
--
--
e57
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearBody
--
--
--
csml-variable:Double
m57
0
infinite
0
--
--
e58
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleolus
--
--
--
csml-variable:Double
m58
0
infinite
0
--
--
e59
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelope
--
--
--
csml-variable:Double
m59
0
infinite
0
--
superoxide anion
--
e6
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m6
0
infinite
0
--
--
e60
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Chromatin
--
--
--
csml-variable:Double
m60
0
infinite
0
--
--
e61
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearChromosome
--
--
--
csml-variable:Double
m61
0
infinite
0
--
--
e62
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearCentromere
--
--
--
csml-variable:Double
m62
0
infinite
0
--
csml-variable:Double
m63
0
infinite
0
--
Inorganic phosphate
--
e65
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m65
0
infinite
0
--
Src
--
e66
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m67
0
infinite
0
--
Src{active}
--
e67
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m68
0
infinite
0
--
Ab1
--
e68
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m69
0
infinite
0
--
p56Lck
--
e7
cso30:c:Protein
cso30:i:CC_Cell_WithoutCellWall_
--
--
csml-variable:Double
m7
0
infinite
0
--
Chloride ion
--
e72
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m73
0
infinite
0
--
NH2Cl
--
e73
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m74
0
infinite
0
--
HOCl
--
e74
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m75
0
infinite
0
--
amines
--
e75
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m76
0
infinite
0
--
chloramines
--
e76
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m77
0
infinite
0
--
N-chlorinated derivatives
--
e77
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m78
0
infinite
0
--
LPS:TLR4
--
e78
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m79
0
infinite
0
--
Taurine chloramine
--
e79
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m80
0
infinite
0
--
--
e8
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell_WithoutCellWall_
--
--
--
csml-variable:Double
m8
0
infinite
0
--
IKappaB{oxidized}
--
e80
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m81
0
infinite
0
--
degradants
--
e81
cso30:c:EntityBiological
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m82
0
infinite
0
--
GlyCl
--
e82
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m83
0
infinite
0
--
peroxinitrite
--
e83
cso30:c:SmallMolecule
cso30:i:CC_Cell_WithoutCellWall_
--
--
csml-variable:Double
m84
0
infinite
0
--
NO
--
e84
cso30:c:SmallMolecule
cso30:i:CC_Cell_WithoutCellWall_
--
--
csml-variable:Double
m85
0
infinite
0
--
superoxide
--
e85
cso30:c:SmallMolecule
cso30:i:CC_Cell_WithoutCellWall_
--
--
csml-variable:Double
m86
0
infinite
0
--
IL-1RacP
--
e87
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
csml-variable:Double
m88
0
infinite
0
--
Il-1beta:IL-1R1:IL-1RacP
--
e88
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
csml-variable:Double
m89
0
infinite
0
--
IL-1beta:IL-1R1:IL-1RcaP:MyD88
--
e89
cso30:c:Complex
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m90
0
infinite
0
--
cycloxygenases
--
e9
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m9
0
infinite
0
--
IL-1beta:IL-1R1:IL-1RcaP:MyD88:Tollip
--
e90
cso30:c:Complex
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m91
0
infinite
0
--
IL-1beta:IL-1R1:IL-1RcaP:MyD88:Tollip:IRAK
--
e91
cso30:c:Complex
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m92
0
infinite
0
--
IL-1beta:IL-1R1:IL-1RcaP:MyD88:Tollip:IRAK:TRAF6
--
e92
cso30:c:Complex
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m93
0
infinite
0
--
IL-1beta:IL-1R1:IL-1RcaP:MyD88:Tollip:IRAK:TRAF6:TAK1
--
e93
cso30:c:Complex
cso30:i:CC_Cell_WithoutCellWall_
--
csml-variable:Double
m94
0
infinite
0
--
TNFR:SODD
--
e95
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m96
0
infinite
0
--
TNFR:TNF:alpha:TRADD
--
e96
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m97
0
infinite
0
--
TRAF
--
e97
cso30:c:Protein
cso30:i:CC_Cell_WithoutCellWall_
--
--
csml-variable:Double
m98
0
infinite
0
--
TNFR:TNF-alpha:TRADD:TRAF
--
e98
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m99
0
infinite
0
--
csml-variable:Double
m100
0
infinite
0
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c1 : 1
stoichiometry:c2 : 1
m5*0.1
nodelay
--
0
PMID: 16723122,10225417 ROS are generated through multiple sources in the cell, such as the electron transport chain in mitochondria, ionizing radiations and through enzymes producing superoxide anion such as phagocytic and non-phagocytic NADPH oxidases , lipoxygenases and cycloxygenases.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c20 : 1
stoichiometry:c21 : 1
stoichiometry:c22 : 1
m23*m22*0.1
nodelay
--
0
PMID; 16723122,16343886 The classical NF-kB-activating pathway is induced by a variety of innate and adaptative immunity mediators, such as proinflammatory cytokines (TNFa, IL-1b, Toll-like receptors (TLRs) and antigen receptors (TCR, BCR) ligation
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c23 : 1
stoichiometry:c24 : 1
stoichiometry:c25 : 1
m25*m2534*0.1
nodelay
--
0
PMID; 16723122,15134788,15145317,16439988 The classical NF-kB-activating pathway is induced by a variety of innate and adaptative immunity mediators, such as proinflammatory cytokines (TNFa, IL-1b, Toll-like receptors (TLRs) and antigen receptors (TCR, BCR) ligation
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c26 : 1
stoichiometry:c27 : 1
stoichiometry:c28 : 1
m26*m2450*0.1
nodelay
--
0
PMID; 16723122,12421671,10795740 The classical NF-kB-activating pathway is induced by a variety of innate and adaptative immunity mediators, such as proinflammatory cytokines (TNFa, IL-1b, Toll-like receptors (TLRs) and antigen receptors (TCR, BCR) ligation
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c32 : 1
stoichiometry:c33 : 1
stoichiometry:c34 : 1
m24*m207*0.1
nodelay
--
0
PMID: 16723122,9657155,9346241 Whereas all these NF-kB inducers signal through different receptors and adaptor proteins, they all converge to the activation of the so called IkB-kinase (IKK) complex, which includes the scaffold protein NF-kB essential modulator (NEMO, also called IKKg, IKKa and IKKb kinases.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c35 : 1
stoichiometry:c37 : 1
stoichiometry:c36 : 1
m207*m19*0.1
nodelay
--
0
PMID: 16723122,9657155,9346241 Whereas all these NF-kB inducers signal through different receptors and adaptor proteins, they all converge to the activation of the so called IkB-kinase (IKK) complex, which includes the scaffold protein NF-kB essential modulator (NEMO, also called IKKg, IKKa and IKKb kinases.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c38 : 1
stoichiometry:c39 : 1
stoichiometry:c40 : 1
m27*m207*0.1
nodelay
--
0
PMID: 16723122,9657155,9346241 Whereas all these NF-kB inducers signal through different receptors and adaptor proteins, they all converge to the activation of the so called IkB-kinase (IKK) complex, which includes the scaffold protein NF-kB essential modulator (NEMO, also called IKKg, IKKa and IKKb kinases.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c41 : 1
stoichiometry:c42 : 1
stoichiometry:c43 : 1
m28*m207*0.1
nodelay
--
0
PMID: 16723122,9657155,9346241 Whereas all these NF-kB inducers signal through different receptors and adaptor proteins, they all converge to the activation of the so called IkB-kinase (IKK) complex, which includes the scaffold protein NF-kB essential modulator (NEMO, also called IKKg, IKKa and IKKb kinases.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c44 : 1
stoichiometry:c45 : 1
stoichiometry:c46 : 1
m29*m16*0.1
nodelay
--
0
PMID: 16723122 Once activated by phosphorylation, the IKK complex phosphorylates IkBa on Ser32 and Ser36, which is subsequently ubiquitinated and degraded via the proteasome pathway
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c47 : 1
stoichiometry:c223 : 1
stoichiometry:c48 : 1
m30*0.1
nodelay
--
0
PMID: 16723122 Once activated by phosphorylation, the IKK complex phosphorylates IkBa on Ser32 and Ser36, which is subsequently ubiquitinated and degraded via the proteasome pathway PMID: 16723122 They showed that, whereas NAC and PDTC efficiently blocked TNF-induced IkBa degradation and NF-kB activation,the more potent antioxidants epigallocatechin-gallate (EGCG) and Vitamin E analog Trolox failed to inhibit TNF-stimulated NF-kB activation, suggesting that the effect of NAC and PDTC on NF-kB signalling does not rely on their antioxidant capacities, but rather acts by inhibiting a crucial step in TNF signalling. PMID: 16723122 PDTC is likely to inhibit IkB-ubiquitin ligase activity.
p19
p19
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c49 : 1
stoichiometry:c222 : 1
stoichiometry:c50 : 1
stoichiometry:c51 : 1
m31*0.1
nodelay
--
0
PMID: 16723122 Once activated by phosphorylation, the IKK complex phosphorylates IkBa on Ser32 and Ser36, which is subsequently ubiquitinated and degraded via the proteasome pathway PMID: 16723122 They showed that, whereas NAC and PDTC efficiently blocked TNF-induced IkBa degradation and NF-kB activation,the more potent antioxidants epigallocatechin-gallate (EGCG) and Vitamin E analog Trolox failed to inhibit TNF-stimulated NF-kB activation, suggesting that the effect of NAC and PDTC on NF-kB signalling does not rely on their antioxidant capacities, but rather acts by inhibiting a crucial step in TNF signalling.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c3 : 1
stoichiometry:c4 : 1
m9*0.1
nodelay
--
0
PMID: 16723122,6254151 ROS are generated through multiple sources in the cell, such as the electron transport chain in mitochondria, ionizing radiations and through enzymes producing superoxide anion such as phagocytic and non-phagocytic NADPH oxidases , lipoxygenases and cycloxygenases.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c52 : 1
stoichiometry:c53 : 1
m15*0.1
nodelay
--
0
PMID: 16723122 The freed NF-kB then translocates into the nucleus where it activates the transcription of target genes such as cytokines, chemokines, adhesion molecules and inhibitors of apoptosis
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c54 : 1
stoichiometry:c55 : 1
m33*0.1
nodelay
--
0
PMID: 16723122 The freed NF-kB then translocates into the nucleus where it activates the transcription of target genes such as cytokines, chemokines, adhesion molecules and inhibitors of apoptosis
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c56 : 1
stoichiometry:c57 : 1
m33*0.1
nodelay
--
0
PMID: 16723122 The freed NF-kB then translocates into the nucleus where it activates the transcription of target genes such as cytokines, chemokines, adhesion molecules and inhibitors of apoptosis
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c58 : 1
stoichiometry:c59 : 1
m33*0.1
nodelay
--
0
PMID: 16723122 The freed NF-kB then translocates into the nucleus where it activates the transcription of target genes such as cytokines, chemokines, adhesion molecules and inhibitors of apoptosis
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c60 : 1
stoichiometry:c61 : 1
m33*0.1
nodelay
--
0
PMID: 16723122 The freed NF-kB then translocates into the nucleus where it activates the transcription of target genes such as cytokines, chemokines, adhesion molecules and inhibitors of apoptosis
p25
p25
cso30:i:ME_Processing
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c66 : 1
stoichiometry:c68 : 1
stoichiometry:c69 : 1
stoichiometry:c70 : 1
stoichiometry:c67 : 1
m173*m181*m174*m38*0.1
nodelay
--
0
PMID: 16723122,12352969 It is induced by B-cell activating factor (BAFF) , lymphotoxin b (LTb), CD40 ligand and human T cell leukemia (HTLV) and Epstein-Barr (EBV) virus. It enhances NF-kB inducing kinase (NIK)- and IKKa-dependent processing of p100 into p52, which binds DNA in association with its partners, like RelB.
p26
p26
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c62 : 1
stoichiometry:c63 : 1
stoichiometry:c65 : 1
stoichiometry:c64 : 1
m182*m181*m1593*0.1
nodelay
--
0
PMID: 16723122,9657155,9346241 Whereas all these NF-kB inducers signal through different receptors and adaptor proteins, they all converge to the activation of the so called IkB-kinase (IKK) complex, which includes the scaffold protein NF-kB essential modulator (NEMO, also called IKKg, IKKa and IKKb kinases.
p25
p27
cso30:i:ME_Processing
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c71 : 1
stoichiometry:c75 : 1
stoichiometry:c77 : 1
stoichiometry:c79 : 1
stoichiometry:c72 : 1
m173*m174*m181*m39*0.1
nodelay
--
0
PMID: 16723122,12387745 It is induced by B-cell activating factor (BAFF) , lymphotoxin b (LTb), CD40 ligand and human T cell leukemia (HTLV) and Epstein-Barr (EBV) virus. It enhances NF-kB inducing kinase (NIK)- and IKKa-dependent processing of p100 into p52, which binds DNA in association with its partners, like RelB.
p25
p28
cso30:i:ME_Processing
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c73 : 1
stoichiometry:c76 : 1
stoichiometry:c78 : 1
stoichiometry:c80 : 1
stoichiometry:c74 : 1
m173*m174*m181*m40*0.1
nodelay
--
0
PMID: 16723122,12374738 It is induced by B-cell activating factor (BAFF) , lymphotoxin b (LTb), CD40 ligand and human T cell leukemia (HTLV) and Epstein-Barr (EBV) virus. It enhances NF-kB inducing kinase (NIK)- and IKKa-dependent processing of p100 into p52, which binds DNA in association with its partners, like RelB.
p29
p29
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c81 : 1
stoichiometry:c82 : 1
stoichiometry:c83 : 1
m167*m168*0.1
nodelay
--
0
PMID: 16723122 It enhances NF-kB inducing kinase (NIK)- and IKKa-dependent processing of p100 into p52, which binds DNA in association with its partners, like RelB.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c5 : 1
stoichiometry:c6 : 1
m11*0.1
nodelay
--
0
PMID: 16723122,10029572,10488060,12147646 ROS are generated through multiple sources in the cell, such as the electron transport chain in mitochondria, ionizing radiations and through enzymes producing superoxide anion such as phagocytic and non-phagocytic NADPH oxidases , lipoxygenases and cycloxygenases.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c84 : 1
stoichiometry:c85 : 1
m41*0.1
nodelay
--
0
PMID: 16723122 It enhances NF-kB inducing kinase (NIK)- and IKKa-dependent processing of p100 into p52, which binds DNA in association with its partners, like RelB.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c86 : 1
stoichiometry:c87 : 1
stoichiometry:c88 : 1
m42*m43*0.1
nodelay
--
0
PMID: 16723122 It enhances NF-kB inducing kinase (NIK)- and IKKa-dependent processing of p100 into p52, which binds DNA in association with its partners, like RelB.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c89 : 1
stoichiometry:c90 : 1
stoichiometry:c91 : 1
m45*m16*0.1
nodelay
--
0
PMID: 16723122,15592513 a recent study in Jurkat leukemic cells has shown that NF-kB activation by H2O2 induces Bfl-1, which, in turn, attenuates Fas-mediated apoptosis
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c92 : 1
stoichiometry:c93 : 1
m33*0.1
nodelay
--
0
PMID: 16723122,15592513 a recent study in Jurkat leukemic cells has shown that NF-kB activation by H2O2 induces Bfl-1, which, in turn, attenuates Fas-mediated apoptosis
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c94 : 1
stoichiometry:c95 : 1
stoichiometry:c96 : 1
stoichiometry:c97 : 1
m47*m30*0.1
nodelay
--
0
PMID: 16723122,10754328 Furthermore, the IkBa degradation mechanism appears to be proteasome-independent, but instead relies on a calpain-mediated digestion after phophorylation on S/T in the so-called PEST sequence of the inhibitor
p35
p35
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c98 : 1
stoichiometry:c99 : 1
stoichiometry:c132 : 1
stoichiometry:c133 : 1
stoichiometry:c134 : 1
stoichiometry:c276 : 1
stoichiometry:c277 : 1
stoichiometry:c288 : 1
stoichiometry:c100 : 1
m48*m16*m45*m2529*m7*0.1
nodelay
--
0
PMID: 16723122,11231305,8797825 NF-kB activation induced by tyrosine phosphorylation of IkBa was also observed after pervanadate (a potent tyrosine phosphatase inhibitor) and hypoxia/reoxygenation treatment PMID: 16723122,11231305 TCR-associated tyrosine kinases p56Lck and ZAP-70 were required for pervanadate-induced IkBa tyrosine phosphorylation, without showing that these kinases indeed phosphorylate IkBa directly PMID: 16723122,12429743 In that case, the tyrosine kinase c-Src has been reported to be responsible for IkBa tyrosine phosphorylation
p36
p36
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c101 : 1
stoichiometry:c102 : 1
stoichiometry:c103 : 1
m1066*m30*0.1
nodelay
--
0
PMID: 16723122,12711606 Recently,Takada et al. reported that Syk tyrosine kinase was required for H2O2-induced IkBa tyrosine phosphorylation and NF-kB activation, and was capable of phosphorylating IkBa in vitro, suggesting that Syk may be the terminal tyrosine kinase responsible for IkBa tyrosine phosphorylation
p37
p37
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c104 : 1
stoichiometry:c105 : 1
stoichiometry:c106 : 1
m45*m207*0.1
nodelay
--
0
PMID: 16723122,16619039 Unexpectedly, micromolar amounts of H2O2 were shown indeed capable of inducing IKK activation in these cell lines, leading to a classical IkBa phosphorylation on Ser32 and 36
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c107 : 1
stoichiometry:c108 : 1
stoichiometry:c109 : 1
m49*m16*0.1
nodelay
--
0
PMID: 16723122,16619039 Unexpectedly, micromolar amounts of H2O2 were shown indeed capable of inducing IKK activation in these cell lines, leading to a classical IkBa phosphorylation on Ser32 and 36
p39
p39
cso30:i:ME_Dephosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c110 : 1
stoichiometry:c111 : 1
stoichiometry:c112 : 1
stoichiometry:c113 : 1
m63*m347277*0.1
nodelay
--
0
PMID: 16723122,10995586 SHIP-1, a lipid phosphatase, acts by dephosphorylating the membranebound PtdIns(3,4,5)P3, generated by PI3Kinase, and has thus been described as a negative regulator of immune receptor, cytokine and growth factor receptor signalling
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c7 : 1
stoichiometry:c8 : 1
m12*0.1
nodelay
--
0
PMID: 16723122,10029572,10488060,12147646 ROS are generated through multiple sources in the cell, such as the electron transport chain in mitochondria, ionizing radiations and through enzymes producing superoxide anion such as phagocytic and non-phagocytic NADPH oxidases , lipoxygenases and cycloxygenases.
p40
p40
cso30:i:ME_UnknownProduction
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c114 : 1
stoichiometry:c115 : 1
m66*0.1
nodelay
--
0
PMID: 16723122,10995586 SHIP-1, a lipid phosphatase, acts by dephosphorylating the membranebound PtdIns(3,4,5)P3, generated by PI3Kinase, and has thus been described as a negative regulator of immune receptor, cytokine and growth factor receptor signalling
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c119 : 1
stoichiometry:c120 : 1
stoichiometry:c121 : 1
m45*m67*0.1
nodelay
--
0
PMID: 16723122 First, activated Src induces Abl-mediated phophorylation of PKD at Y463 in the PH domain.
p43
p43
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c122 : 1
stoichiometry:c123 : 1
stoichiometry:c124 : 1
stoichiometry:c125 : 1
m68*m69*m53120*0.1
nodelay
--
0
PMID: 16723122 First, activated Src induces Abl-mediated phophorylation of PKD at Y463 in the PH domain.This facilitates release of the PH domain, which exposes the catalytic domain and activation loop residues to a second phosphorylation by PKCd on S738/S742. This induces a fully activated PKD which, in turn, activates the IKK complex
p43
p44
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c126 : 1
stoichiometry:c128 : 1
stoichiometry:c127 : 1
m70*m1957*0.1
nodelay
--
0
PMID: 16723122 First, activated Src induces Abl-mediated phophorylation of PKD at Y463 in the PH domain.This facilitates release of the PH domain, which exposes the catalytic domain and activation loop residues to a second phosphorylation by PKCd on S738/S742. This induces a fully activated PKD which, in turn, activates the IKK complex
p45
p45
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c129 : 1
stoichiometry:c130 : 1
stoichiometry:c131 : 1
m71*m207*0.1
nodelay
--
0
PMID: 16723122 First, activated Src induces Abl-mediated phophorylation of PKD at Y463 in the PH domain.This facilitates release of the PH domain, which exposes the catalytic domain and activation loop residues to a second phosphorylation by PKCd on S738/S742. This induces a fully activated PKD which, in turn, activates the IKK complex
p46
p46
cso30:i:ME_UnknownActivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c136 : 1
stoichiometry:c137 : 1
stoichiometry:c142 : 1
stoichiometry:c174 : 1
stoichiometry:c175 : 1
stoichiometry:c138 : 1
m19*m16*0.1
nodelay
--
0
PMID: 16723122,11479295 Korn et al. reported that, in this case, H2O2 is capable of inhibiting TNF-induced NF-kB activation in lung epithelial cells by reducing IKKb activity through oxidation of cysteine residues in the IKK complex PMID: 16723122,16344117 Other works demonstrated that ammonia monochloramine (NH2Cl) and glycine chloramine (GlyCl), two others neutrophils-derived oxidants, but not TauCl, were capable of inhibiting TNFinduced NF-kB activation via the same molecular mechanism
p47
p47
cso30:i:ME_Oxidation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c139 : 1
stoichiometry:c140 : 1
stoichiometry:c141 : 1
m45*m207*0.1
nodelay
--
0
PMID: 16723122,11479295 Korn et al. reported that, in this case, H2O2 is capable of inhibiting TNF-induced NF-kB activation in lung epithelial cells by reducing IKKb activity through oxidation of cysteine residues in the IKK complex
p48
p48
cso30:i:ME_UnknownInteraction
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c143 : 1
stoichiometry:c144 : 1
stoichiometry:c146 : 1
stoichiometry:c145 : 1
m45*m73*m13*0.1
nodelay
--
0
PMID: 16723122,9787133 HOCl is formed from H2O2 and Cl ion by myeloperoxidase
p49
p49
cso30:i:ME_UnknownInteraction
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c147 : 1
stoichiometry:c148 : 1
stoichiometry:c149 : 1
stoichiometry:c150 : 1
stoichiometry:c157 : 1
m75*m76*0.1
nodelay
--
0
PMID: 16723122,10333500 HOCl is a strong oxidant that kills phagocytosed bacteria, but can also react with amines to produce chloramines and N-chlorinated derivatives which have long lifetimes PMID: 16723122 Among these chloramines, taurine chloramine (TauCl) is generated in great amount in HOClproducing neutrophils because these cells contain high concentrations of taurine, a free amino acid not incorporated in proteins.
p5
p5
cso30:i:ME_UnknownActivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c10 : 1
stoichiometry:c244 : 1
stoichiometry:c249 : 1
stoichiometry:c250 : 1
stoichiometry:c251 : 1
stoichiometry:c248 : 1
m113*m111*0.1
nodelay
--
0
PMID: 16723122 In fact, several laboratories have independently reported that NF-kB down-regulates JNK activation by suppressing TNF-induced ROS accumulation PMID: 16723122 Moreover, prolonged JNK activation is inhibited by pre-treatment of NF-kB-defective cells with the antioxidants BHA or NAC, suggesting that ROS are key messengers of prolonged JNK activation after TNF induction.
p84
p50
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c151 : 1
stoichiometry:c152 : 1
stoichiometry:c153 : 1
m6254*m2828*0.1
nodelay
--
0
PMID:16723122,1698311,7681082,2402637 CD14, which is expressed on the surface and in the cytoplasm (sCD14) of monocytes/macrophages and neutrophils, has also been reported to play a key role in the recognition of LPS and in downstream cytokine release, notably through its interaction with LPS-binding protein (LBP), which binds the lipid A region of LPS and aids LPS to dock at the TLR4
p51
p51
cso30:i:ME_UnknownActivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c154 : 1
stoichiometry:c155 : 1
stoichiometry:c158 : 1
stoichiometry:c156 : 1
stoichiometry:c159 : 1
m79*m16*0.1
nodelay
--
0
PMID: 16723122,11490015 For example, TauCl was shown to decrease LPSinduced NF-kB activation and IKK activity in alveolar macrophages, resulting in inhibition of iNOS and TNFa gene expression
p51
p52
cso30:i:ME_UnknownActivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c160 : 1
stoichiometry:c161 : 1
stoichiometry:c163 : 1
stoichiometry:c162 : 1
m79*m207*0.1
nodelay
--
0
PMID: 16723122,11490015 For example, TauCl was shown to decrease LPSinduced NF-kB activation and IKK activity in alveolar macrophages, resulting in inhibition of iNOS and TNFa gene expression
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c165 : 1
stoichiometry:c164 : 1
m33*0.1
nodelay
--
0
PMID: 16723122,11490015 For example, TauCl was shown to decrease LPSinduced NF-kB activation and IKK activity in alveolar macrophages, resulting in inhibition of iNOS and TNFa gene expression
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c166 : 1
stoichiometry:c167 : 1
m33*0.1
nodelay
--
0
PMID: 16723122,11490015 For example, TauCl was shown to decrease LPSinduced NF-kB activation and IKK activity in alveolar macrophages, resulting in inhibition of iNOS and TNFa gene expression
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c168 : 1
stoichiometry:c169 : 1
m17*0.1
nodelay
--
0
PMID: 16723122,11983684 The molecular mechanism of this inhibition relied on oxidation of IkBa methionine 45, which renders the inhibitor resistant to TNF-induced degradation
p56
p56
cso30:i:ME_UnknownDegradation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c170 : 1
stoichiometry:c171 : 1
stoichiometry:c173 : 1
stoichiometry:c172 : 1
m19*m80*0.1
nodelay
--
0
PMID: 16723122,11983684 The molecular mechanism of this inhibition relied on oxidation of IkBa methionine 45, which renders the inhibitor resistant to TNF-induced degradation
p57
p57
cso30:i:ME_UnknownInteraction
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c176 : 1
stoichiometry:c177 : 1
stoichiometry:c178 : 1
m85*m86*0.1
nodelay
--
0
PMID: 16723122,2154753 Peroxinitrite is formed by the reaction of nitric oxide (NO) with superoxide
p58
p58
cso30:i:ME_UnknownActivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c237 : 1
stoichiometry:c241 : 1
stoichiometry:c242 : 1
m113*m146*0.1
nodelay
--
0
PMID: 16723122 Using blocking antibodies, they also reported that the ROS-dependent Rac1 activation is independent of the CD14 receptor, suggesting that alternative pathways contribute to NF-kB activation by LPS
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c182 : 1
stoichiometry:c183 : 1
stoichiometry:c184 : 1
m88*m21*0.1
nodelay
--
0
PMID: 16723122,9374458,9371760,10854325 IL-1b is a potent pro-inflammatory cytokine that exerts its effects by binding to its receptor (IL1-R1) on the plasma membrane. This binding induces the recruitment to the receptor cytoplasmic tail of adaptator and effector proteins, including IL-1RacP, MyD88 and Tollip
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c11 : 1
stoichiometry:c12 : 1
stoichiometry:c13 : 1
m15*m17*0.1
nodelay
--
0
PMID: 16723122 In the resting state, NF-kB is sequestered in the cytoplasm of the cell through its tight associationwith inhibitory proteins called IkBs
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c185 : 1
stoichiometry:c186 : 1
stoichiometry:c187 : 1
m89*m1572*0.1
nodelay
--
0
PMID: 16723122,9374458,9371760,10854325 IL-1b is a potent pro-inflammatory cytokine that exerts its effects by binding to its receptor (IL1-R1) on the plasma membrane. This binding induces the recruitment to the receptor cytoplasmic tail of adaptator and effector proteins, including IL-1RacP, MyD88 and Tollip
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c188 : 1
stoichiometry:c189 : 1
stoichiometry:c190 : 1
m90*m3973*0.1
nodelay
--
0
PMID: 16723122,9374458,9371760,10854325 IL-1b is a potent pro-inflammatory cytokine that exerts its effects by binding to its receptor (IL1-R1) on the plasma membrane. This binding induces the recruitment to the receptor cytoplasmic tail of adaptator and effector proteins, including IL-1RacP, MyD88 and Tollip
p62
p62
cso30:i:ME_Binding
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c191 : 1
stoichiometry:c192 : 1
stoichiometry:c193 : 1
m184*m91*0.1
nodelay
--
0
PMID: 16723122,9430229,11518704 MyD88 then mediates the recruitment of the interleukin-1 receptorassociated kinase (IRAK) family members to the IL-1R, which, in turn, recruit TRAF6
p62
p63
cso30:i:ME_Binding
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c194 : 1
stoichiometry:c195 : 1
stoichiometry:c196 : 1
m183*m92*0.1
nodelay
--
0
PMID: 16723122,9430229,11518704 MyD88 then mediates the recruitment of the interleukin-1 receptorassociated kinase (IRAK) family members to the IL-1R, which, in turn, recruit TRAF6
p64
p64
cso30:i:ME_Binding
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c197 : 1
stoichiometry:c198 : 1
stoichiometry:c199 : 1
m93*m1573*0.1
nodelay
--
0
PMID: 16723122,11460167 Then, TRAF6 recruits TAK1 that mediates phosphorylation of the IKK complex, a crucial step in NF-kB activation
p65
p65
cso30:i:ME_Phosphorylation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c200 : 1
stoichiometry:c201 : 1
stoichiometry:c202 : 1
m94*m207*0.1
nodelay
--
0
PMID: 16723122,11460167 Then, TRAF6 recruits TAK1 that mediates phosphorylation of the IKK complex, a crucial step in NF-kB activation
p66
p66
cso30:i:ME_UnknownActivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c203 : 1
stoichiometry:c204 : 1
stoichiometry:c205 : 1
m19*m219*0.1
nodelay
--
0
PMID: 16723122 It binds to its cellular TNFR1 receptor, which triggers signalling cascades that activate NF-kB and AP-1 transcription factors.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c206 : 1
stoichiometry:c207 : 1
stoichiometry:c208 : 1
m18*m3491*0.1
nodelay
--
0
PMID: 16723122,9915703 The ligation of TNFR1 by trimeric TNFa leads to the aggregation of the receptor and dissociation of silencer of death domain (SODD), an inhibitor of TNFR1 activity, which allows binding of TNFR-associated death domain protein (TRADD protein)
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c210 : 1
stoichiometry:c211 : 1
stoichiometry:c212 : 1
m19*m178*0.1
nodelay
--
0
PMID: 16723122,9915703 The ligation of TNFR1 by trimeric TNFa leads to the aggregation of the receptor and dissociation of silencer of death domain (SODD), an inhibitor of TNFR1 activity, which allows binding of TNFR-associated death domain protein (TRADD protein)
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c213 : 1
stoichiometry:c214 : 1
stoichiometry:c215 : 1
m97*m98*0.1
nodelay
--
0
PMID: 16723122,12787559 Although many members of the TRAF family have been implicated in TNF signalling, it appears that both TRAF2 and TRAF5 have a role in NF-kB activation by TNFa
p7
p7
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c14 : 1
stoichiometry:c15 : 1
stoichiometry:c16 : 1
stoichiometry:c209 : 1
m230*m96*0.1
nodelay
--
0
PMID; 16723122,12421671,10795740 The classical NF-kB-activating pathway is induced by a variety of innate and adaptative immunity mediators, such as proinflammatory cytokines (TNFa, IL-1b, Toll-like receptors (TLRs) and antigen receptors (TCR, BCR) ligation PMID: 16723122,9915703 The ligation of TNFR1 by trimeric TNFa leads to the aggregation of the receptor and dissociation of silencer of death domain (SODD), an inhibitor of TNFR1 activity, which allows binding of TNFR-associated death domain protein (TRADD protein)
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c216 : 1
stoichiometry:c217 : 1
stoichiometry:c218 : 1
m100*m99*0.1
nodelay
--
0
PMID: 16723122,10755617 RIP1 functions as a scaffold protein notably through its direct binding to NEMO, which allows the recruitment of the IKK complex in TNF signalling
p70
p71
cso30:i:ME_Binding
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c219 : 1
stoichiometry:c220 : 1
stoichiometry:c221 : 1
m101*m1593*0.1
nodelay
--
0
PMID: 16723122,10755617 RIP1 functions as a scaffold protein notably through its direct binding to NEMO, which allows the recruitment of the IKK complex in TNF signalling
p72
p72
cso30:i:ME_UnknownDegradation
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c224 : 1
stoichiometry:c226 : 1
stoichiometry:c227 : 1
stoichiometry:c225 : 1
m31*m37148*0.1
nodelay
--
0
PMID: 16723122 These results are reinforced by the observation that, whereas NAC does not inhibit IL-1 or TPA-induced IkBa degradation, PDTC does
p73
p73
cso30:i:ME_Binding
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c228 : 1
stoichiometry:c229 : 1
stoichiometry:c230 : 1
m185*m105*0.1
nodelay
--
0
PMID: 16723122 These results are reinforced by the observation that, whereas NAC does not inhibit IL-1 or TPA-induced IkBa degradation, PDTC does
p72
p74
cso30:i:ME_UnknownDegradation
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c231 : 1
stoichiometry:c232 : 1
stoichiometry:c233 : 1
stoichiometry:c300 : 1
m31*m106*0.1
nodelay
--
0
PMID: 16723122 These results are reinforced by the observation that, whereas NAC does not inhibit IL-1 or TPA-induced IkBa degradation, PDTC does
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c234 : 1
stoichiometry:c235 : 1
1.0*0.1
nodelay
--
0
PMID:16723122 They showed that ROS (induced by cigarette smoke or H2O2 treatment) reduce HDAC2 expression
p76
p76
cso30:i:ME_Phosphorylation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c236 : 1
stoichiometry:c179 : 1
stoichiometry:c238 : 1
m10*0.1
nodelay
--
0
PMID: 16723122,12368228 Finally, it should also be noted that NAC was shown to inhibit p65 ser536 phosphorylation, suggesting that post-translationalmodifications affecting p65 are also redox-sensitive
p77
p77
cso30:i:ME_UnknownInactivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c239 : 1
stoichiometry:c180 : 1
stoichiometry:c181 : 1
stoichiometry:c240 : 1
m108*m2619*m110*0.1
nodelay
--
0
PMID: 16723122,14743220 In that respect, they identified growth arrest and DNA damage-inducing protein 45b (GADD45b) and X chromosome-linked IAP (XIAP) as capable of inhibiting JNK signalling by inactivating MEKK7
p78
p78
cso30:i:ME_UnknownProduction
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c243 : 1
stoichiometry:c9 : 1
m102*0.1
nodelay
--
0
PMID: 16723122 They showed that TNFinduced ROS production is responsible for sustained JNK activation in NF-kB-activation deficient cells,whereas wildtype cells exhibited neither ROS production nor sustained JNK activation upon TNF challenge.
p77
p79
cso30:i:ME_UnknownActivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c245 : 1
stoichiometry:c247 : 1
stoichiometry:c116 : 1
stoichiometry:c117 : 1
stoichiometry:c118 : 1
stoichiometry:c246 : 1
m111*m108*0.1
nodelay
--
0
PMID: 16723122,14743220 In that respect, they identified growth arrest and DNA damage-inducing protein 45b (GADD45b) and X chromosome-linked IAP (XIAP) as capable of inhibiting JNK signalling by inactivating MEKK7
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c29 : 1
stoichiometry:c30 : 1
stoichiometry:c31 : 1
m21*m207*0.1
nodelay
--
0
PMID: 16723122,9657155,9346241 Whereas all these NF-kB inducers signal through different receptors and adaptor proteins, they all converge to the activation of the so called IkB-kinase (IKK) complex, which includes the scaffold protein NF-kB essential modulator (NEMO, also called IKKg, IKKa and IKKb kinases.
p80
p80
cso30:i:ME_Binding
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c252 : 1
stoichiometry:c253 : 1
stoichiometry:c254 : 1
m1572*m79*0.1
nodelay
--
0
PMID: 16723122,14751757,: 1475175 Upon binding of TLR4 to LPS, the cytoplasmic region of TLR4 recruits MyD88, which links TLR4 to IRAK and TRAF6 that mediates NF-kB activation
p80
p81
cso30:i:ME_Binding
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c255 : 1
stoichiometry:c256 : 1
stoichiometry:c257 : 1
m184*m114*0.1
nodelay
--
0
PMID: 16723122 Upon binding of TLR4 to LPS, the cytoplasmic region of TLR4 recruits MyD88, which links TLR4 to IRAK and TRAF6 that mediates NF-kB activation
p80
p82
cso30:i:ME_Binding
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c258 : 1
stoichiometry:c259 : 1
stoichiometry:c260 : 1
m183*m115*0.1
nodelay
--
0
PMID: 16723122 Upon binding of TLR4 to LPS, the cytoplasmic region of TLR4 recruits MyD88, which links TLR4 to IRAK and TRAF6 that mediates NF-kB activation
p83
p83
cso30:i:ME_UnknownActivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c262 : 1
stoichiometry:c261 : 1
stoichiometry:c278 : 1
stoichiometry:c279 : 1
stoichiometry:c280 : 1
stoichiometry:c135 : 1
stoichiometry:c263 : 1
stoichiometry:c264 : 1
m16*m117*m68*0.1
nodelay
--
0
PMID: 16723122 Upon binding of TLR4 to LPS, the cytoplasmic region of TLR4 recruits MyD88, which links TLR4 to IRAK and TRAF6 that mediates NF-kB activation PMID: 16723122,14764725,15039334 Pre-treatment of neutrophils with NAC or atocopherol prevented LPS-induced NF-kB activation and the production of pro-inflammatory cytokines, and NAC and DMSO were reported to block NF-kB activation and IL-8 secretion in monocyte-like THP-1 cells challenged with LPS
p84
p84
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c265 : 1
stoichiometry:c266 : 1
stoichiometry:c267 : 1
m3985*m155666*0.1
nodelay
--
0
PMID:16723122,1698311,7681082,2402637 CD14, which is expressed on the surface and in the cytoplasm (sCD14) of monocytes/macrophages and neutrophils, has also been reported to play a key role in the recognition of LPS and in downstream cytokine release, notably through its interaction with LPS-binding protein (LBP), which binds the lipid A region of LPS and aids LPS to dock at the TLR4
p84
p85
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c268 : 1
stoichiometry:c269 : 1
stoichiometry:c270 : 1
stoichiometry:c271 : 1
stoichiometry:c272 : 1
m6255*m3961*0.1
nodelay
--
0
PMID:16723122,1698311,7681082,2402637 CD14, which is expressed on the surface and in the cytoplasm (sCD14) of monocytes/macrophages and neutrophils, has also been reported to play a key role in the recognition of LPS and in downstream cytokine release, notably through its interaction with LPS-binding protein (LBP), which binds the lipid A region of LPS and aids LPS to dock at the TLR4
p86
p86
cso30:i:ME_Binding
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c273 : 1
stoichiometry:c274 : 1
stoichiometry:c275 : 1
m116*m43439*0.1
nodelay
--
0
PMID: 16723122 They showed that, in HEK293T cells, LPS-induced ROS generation and NF-kB activation are mediated by direct interaction of TLR4 with NADPH oxidase 4 (Nox4
p88
p88
cso30:i:ME_Ubiquitination
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c284 : 1
stoichiometry:c285 : 1
m121*0.1
nodelay
--
0
PMID: 16723122 Indeed, ROS inactivate MAP kinase phosphatases (MKPs, which are known to suppress JNK activation) by oxidizing critical residues in their phosphatase domain, which leads to prolonged JNK activation (Fig. 5). Moreover, oxidized MKPs are rapidly degraded by the ubiquitin-proteasome pathway
p89
p89
cso30:i:ME_Oxidation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c281 : 1
stoichiometry:c282 : 1
stoichiometry:c283 : 1
m113*m120*0.1
nodelay
--
0
PMID: 16723122 Indeed, ROS inactivate MAP kinase phosphatases (MKPs, which are known to suppress JNK activation) by oxidizing critical residues in their phosphatase domain, which leads to prolonged JNK activation (Fig. 5). Moreover, oxidized MKPs are rapidly degraded by the ubiquitin-proteasome pathway
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c17 : 1
stoichiometry:c18 : 1
stoichiometry:c19 : 1
m1591*m20*0.1
nodelay
--
0
PMID; 16723122,12421671,10795740 The classical NF-kB-activating pathway is induced by a variety of innate and adaptative immunity mediators, such as proinflammatory cytokines (TNFa, IL-1b, Toll-like receptors (TLRs) and antigen receptors (TCR, BCR) ligation
p90
p90
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c286 : 1
stoichiometry:c287 : 1
m122*0.1
nodelay
--
0
PMID: 16723122 Indeed, ROS inactivate MAP kinase phosphatases (MKPs, which are known to suppress JNK activation) by oxidizing critical residues in their phosphatase domain, which leads to prolonged JNK activation (Fig. 5). Moreover, oxidized MKPs are rapidly degraded by the ubiquitin-proteasome pathway
p93
p93
cso30:i:ME_Binding
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c293 : 1
stoichiometry:c294 : 1
stoichiometry:c295 : 1
stoichiometry:c296 : 1
m113*m128*m183*0.1
nodelay
--
0
PMID: 16723122,15864310 It should, however, be noted that ROS production after LPS challenge has been showed to mediate the formation of a complex between TRAF6 and the redox-sensitive ASK1, which, in turn, triggers p38 activation, another downstream target of LPS signalling
p94
p94
cso30:i:ME_UnknownActivation
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c297 : 1
stoichiometry:c298 : 1
stoichiometry:c299 : 1
m129*m131*0.1
nodelay
--
0
PMID: 16723122,15864310 It should, however, be noted that ROS production after LPS challenge has been showed to mediate the formation of a complex between TRAF6 and the redox-sensitive ASK1, which, in turn, triggers p38 activation, another downstream target of LPS signalling
p95
p95
cso30:i:ME_UnknownProduction
cso30:i:CC_Cell_WithoutCellWall_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c301 : 1
stoichiometry:c302 : 1
m117*0.1
nodelay
--
0
PMID: 16723122,15864310 It should, however, be noted that ROS production after LPS challenge has been showed to mediate the formation of a complex between TRAF6 and the redox-sensitive ASK1, which, in turn, triggers p38 activation, another downstream target of LPS signalling
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--