Original Literature | Model OverView |
---|---|
Publication
Title
Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derivedinflammatory mediators.
Affiliation
CNRS UMR 5540, Bordeaux, Universite Bordeaux 2, France. harizihedi33@yahoo.fr
Abstract
Exposure to pathogens induces antigen-presenting cells (APC) such as macrophagesand dendritic cells (DC) to produce various endogenous mediators, includingarachidonic acid (AA)-derived eicosanoids, cytokines, and nitric oxide (NO).Many secreted products of activated APC can act by themselves in an autocrinemanner and modulate their function. Moreover, the cross-interaction betweenendogenous bioactive molecules regulates the function of professional APC withimportant consequences for their ability to activate and sustain immune andinflammatory responses, and to regulate immune homeostasis. Although neglectedfor many years when compared to their role in cardiovascular homeostasis, cancerand inflammation, the importance of eicosanoids in immunology is becoming moredefined. The role of prostaglandin (PG) E2 (PGE2), one of the best known andmost well studied eicosanoids, is of particular interest. It modulates theactivities of professional DC by acting on their differentiation, maturation andtheir ability to secrete cytokines. Uniquely among haematopoietic cytokines,interleukin-10 (IL-10) is a pleiotropic molecule that displays bothimmunostimulatory and immunoregulatory activities. IL-10 has attached muchattention because of its anti-inflammatory properties. It modulates expressionof cytokines, soluble mediators and cell surface molecules by cells of myeloidorigin, particularly macrophages and DC. We previously reported that PGE2 is apotent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-inducedIL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. BM-DC may beconsidered as an important model to study complex interactions betweenendogenous mediators, and autocrine IL-10 plays a pivotal role in thecrossregulation of AA-derived lipid mediators, cytokines, and NO, with criticaleffects on immune and inflammatory responses.
PMID
16978535
|
Entity
IL10
--
G011345
cso30:c:mRNA
cso30:i:CC_CellComponent
--
csml-variable:Double
m94230
10
infinite
0
TRANSFAC | G011345 |
--
NF-kappaB
--
MO000000058
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m30
10
infinite
0
TRANSPATH | MO000000058 |
--
TNF-alpha
--
MO000000289
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m230
10
infinite
0
InterPro | IPR003636 |
TRANSPATH | MO000000289 |
--
IL-6
--
MO000007384
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m871
10
infinite
0
InterPro | IPR003573 |
TRANSPATH | MO000007384 |
--
csml-variable:Double
m1633
10
infinite
0
--
LPS
--
MO000016882
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m155666
10
infinite
0
TRANSPATH | MO000016882 |
--
IL-10
--
MO000017247
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m2103
10
infinite
0
InterPro | IPR000098 |
TRANSPATH | MO000017247 |
--
COX-2{active}
--
MO000017266
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m2122
10
infinite
0
InterPro | IPR002016 |
TRANSPATH | MO000017266 |
--
PGE2
--
MO000021939
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m346644
10
infinite
0
TRANSPATH | MO000021939 |
--
--
e1
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane
--
--
--
csml-variable:Double
m1
0
infinite
0
--
IL-1RA
--
e10
cso30:c:mRNA
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m10
0
infinite
0
--
EP1:PGE2
--
e11
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m11
0
infinite
0
--
PGE2:EP2
--
e12
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m12
0
infinite
0
--
EP3
--
e13
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m13
0
infinite
0
--
EP3:PGE2
--
e14
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m14
0
infinite
0
--
EP4
--
e15
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m15
0
infinite
0
--
EP4:PGE2
--
e16
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m16
0
infinite
0
--
calcium
--
e18
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m18
0
infinite
0
--
Adenylate cyclase
--
e19
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m19
0
infinite
0
--
--
e2
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m2
0
infinite
0
--
Adenylate cyclase[active}
--
e20
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m20
0
infinite
0
--
CAMP
--
e21
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m21
0
infinite
0
--
Synthetic agonists
--
e22
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m22
0
infinite
0
--
EP2:PGE2:synthetic agonists
--
e23
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m23
0
infinite
0
--
EP4:PGE2:synthetic agonists
--
e24
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m24
0
infinite
0
--
di-butryl CAMP
--
e25
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m25
0
infinite
0
--
EP2:PGE2:di-butryl CAMP
--
e26
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m26
0
infinite
0
--
EP4:PGE2:di-butryl CAMP
--
e27
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m27
0
infinite
0
--
NS-398
--
e28
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m28
0
infinite
0
--
LPS:TLR4
--
e29
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m29
0
infinite
0
--
--
e3
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
--
csml-variable:Double
m3
0
infinite
0
--
NF-kappaB{active}
--
e30
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m31
10
infinite
0
TRANSPATH | MO000000058 |
--
cox-2
--
e32
cso30:c:mRNA
cso30:i:CC_Cytosol
--
csml-variable:Double
m33
0
infinite
0
--
IL-10R1
--
e35
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m36
0
infinite
0
--
IL-10R2
--
e36
cso30:c:Protein
cso30:i:CC_Cytoplasm
--
--
csml-variable:Double
m37
0
infinite
0
--
IL-10R1:IL-10R2
--
e37
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m38
0
infinite
0
--
IL-10R:IL-10
--
e38
cso30:c:Complex
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m39
0
infinite
0
--
csml-variable:Double
m40
10
infinite
0
--
--
e4
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m4
0
infinite
0
--
degradants
--
e40
cso30:c:EntityBiological
cso30:i:CC_Cytoplasm
--
--
csml-variable:Double
m41
0
infinite
0
--
proinflammatory cytokine
--
e41
cso30:c:mRNA
cso30:i:CC_Cytoplasm
--
--
csml-variable:Double
m42
0
infinite
0
--
proinflammatory cytokines
--
e42
cso30:c:Protein
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m43
0
infinite
0
--
FLAP
--
e43
cso30:c:Protein
cso30:i:CC_Cytoplasm
--
--
csml-variable:Double
m44
0
infinite
0
--
IL-4
--
e44
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m45
0
infinite
0
--
IL-13
--
e45
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m46
0
infinite
0
--
iNOS
--
e47
cso30:c:Protein
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m48
0
infinite
0
--
NO
--
e48
cso30:c:SmallMolecule
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m49
0
infinite
0
--
EP1
--
e5
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m5
0
infinite
0
--
--
e50
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelopeLumen
--
--
--
csml-variable:Double
m50
0
infinite
0
--
--
e51
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearPore
--
--
--
csml-variable:Double
m51
0
infinite
0
--
--
e52
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearInnerMembrane
--
--
--
csml-variable:Double
m52
0
infinite
0
--
--
e53
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearLumen
--
--
--
csml-variable:Double
m53
0
infinite
0
--
--
e54
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearOuterMembrane
--
--
--
csml-variable:Double
m54
0
infinite
0
--
--
e55
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleus
--
--
--
csml-variable:Double
m55
0
infinite
0
--
--
e56
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleoplasm
--
--
--
csml-variable:Double
m56
0
infinite
0
--
--
e57
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearBody
--
--
--
csml-variable:Double
m57
0
infinite
0
--
--
e58
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleolus
--
--
--
csml-variable:Double
m58
0
infinite
0
--
--
e59
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelope
--
--
--
csml-variable:Double
m59
0
infinite
0
--
EP2
--
e6
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m6
0
infinite
0
--
--
e60
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Chromatin
--
--
--
csml-variable:Double
m60
0
infinite
0
--
--
e61
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearChromosome
--
--
--
csml-variable:Double
m61
0
infinite
0
--
--
e62
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearCentromere
--
--
--
csml-variable:Double
m62
0
infinite
0
--
NF-kappaB{active}
--
e64
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m65
10
infinite
0
TRANSPATH | MO000000058 |
--
DNA
--
e65
cso30:c:Dna
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m66
0
infinite
0
--
NF-KappaB{active}:DNA
--
e66
cso30:c:Complex
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m67
0
infinite
0
--
iNOS
--
e67
cso30:c:mRNA
cso30:i:CC_Cytoplasm
--
csml-variable:Double
m68
0
infinite
0
--
--
e7
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell
--
--
--
csml-variable:Double
m7
0
infinite
0
--
--
e8
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell_WithoutCellWall_
--
--
--
csml-variable:Double
m8
0
infinite
0
--
--
e9
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytoplasm
--
--
--
csml-variable:Double
m9
0
infinite
0
--
p1
p1
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c2 : 1
stoichiometry:c3 : 1
stoichiometry:c4 : 1
stoichiometry:c93 : 1
stoichiometry:c1 : 1
m93589*m346644*m230*0.1
nodelay
--
0
PMID: 16978535,9348319 On the contrary, PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha PMID: 16978535 The fact that PGE2 and IL-10 strongly inhibit the production of IL-12 implies a feedback mechanism at the level of the APC, and may represent an important mean controlling the differentiation of APC from bone marrow progenitors or from circulating monocytes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c28 : 1
stoichiometry:c29 : 1
stoichiometry:c30 : 1
m12*m19*0.1
nodelay
--
0
PMID: 16978535 The EP2 and EP4 receptors signal by stimulating adenylate cyclase, which increases the intracellular levels of cAMP.
p11
p11
cso30:i:ME_ChangeInMaterialConcentration
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c31 : 1
stoichiometry:c32 : 1
m20*0.1
nodelay
--
0
PMID: 16978535 The EP2 and EP4 receptors signal by stimulating adenylate cyclase, which increases the intracellular levels of cAMP. PMID: 16978535 The molecular mechanisms by which PGE2 possibly inhibits iNOS expression could be related to its ability to increase intracellular cAMP levels, which in turn inhibit NF-KappaB/DNA binding activity.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c36 : 1
stoichiometry:c37 : 1
stoichiometry:c38 : 1
m22*m12*0.1
nodelay
--
0
PMID: 16978535,11859113 Using EP receptor-selective synthetic agonists and dibutyryl cAMP, we demonstrated that PGE2-EP2 and -EP4 signaling stimulate the production of IL-10 by BM-DC
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c33 : 1
stoichiometry:c34 : 1
stoichiometry:c35 : 1
m16*m19*0.1
nodelay
--
0
PMID: 16978535 The EP2 and EP4 receptors signal by stimulating adenylate cyclase, which increases the intracellular levels of cAMP.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c39 : 1
stoichiometry:c40 : 1
m16*m22*0.1
nodelay
--
0
PMID: 16978535,11859113 Using EP receptor-selective synthetic agonists and dibutyryl cAMP, we demonstrated that PGE2-EP2 and -EP4 signaling stimulate the production of IL-10 by BM-DC
p15
p15
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c42 : 1
stoichiometry:c43 : 1
stoichiometry:c44 : 1
m24*m94230*0.1
nodelay
--
0
PMID: 16978535,11859113 Using EP receptor-selective synthetic agonists and dibutyryl cAMP, we demonstrated that PGE2-EP2 and -EP4 signaling stimulate the production of IL-10 by BM-DC
p15
p16
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c45 : 1
stoichiometry:c47 : 1
stoichiometry:c61 : 1
stoichiometry:c63 : 1
stoichiometry:c46 : 1
m94230*m23*m155666*0.1
nodelay
--
0
PMID: 16978535,11859113 Using EP receptor-selective synthetic agonists and dibutyryl cAMP, we demonstrated that PGE2-EP2 and -EP4 signaling stimulate the production of IL-10 by BM-DC PMID: 16978535 Agonists of cAMP-elevating receptors, such as butaprost (EP2 receptor), dose-dependently enhanced IL-10 production from LPS-stimulated BM-DC PMID: 16978535,11859113 The enhanced BM-DC release of IL-10 observed after LPS stimulation appears to be closely connected to COX-2 activity as the COX-2-selective inhibitor NS-398 significantly reduced IL-10 levels
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c48 : 1
stoichiometry:c49 : 1
stoichiometry:c50 : 1
m25*m12*0.1
nodelay
--
0
PMID: 16978535,11859113 Using EP receptor-selective synthetic agonists and dibutyryl cAMP, we demonstrated that PGE2-EP2 and -EP4 signaling stimulate the production of IL-10 by BM-DC
p15
p18
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c51 : 1
stoichiometry:c53 : 1
stoichiometry:c60 : 1
stoichiometry:c62 : 1
stoichiometry:c52 : 1
m26*m94230*m155666*0.1
nodelay
--
0
PMID: 16978535,11859113 Using EP receptor-selective synthetic agonists and dibutyryl cAMP, we demonstrated that PGE2-EP2 and -EP4 signaling stimulate the production of IL-10 by BM-DC PMID: 16978535 Agonists of cAMP-elevating receptors, such as butaprost (EP2 receptor), dose-dependently enhanced IL-10 production from LPS-stimulated BM-DC PMID: 16978535,11859113 The enhanced BM-DC release of IL-10 observed after LPS stimulation appears to be closely connected to COX-2 activity as the COX-2-selective inhibitor NS-398 significantly reduced IL-10 levels
p15
p19
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c54 : 1
stoichiometry:c57 : 1
stoichiometry:c59 : 1
m94230*m27*0.1
nodelay
--
0
PMID: 16978535,11859113 Using EP receptor-selective synthetic agonists and dibutyryl cAMP, we demonstrated that PGE2-EP2 and -EP4 signaling stimulate the production of IL-10 by BM-DC
p2
p2
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c6 : 1
stoichiometry:c7 : 1
stoichiometry:c8 : 1
stoichiometry:c5 : 1
m94230*m346644*m155666*0.1
nodelay
--
0
PMID: 16978535,7525853,8739216,9464843 Previous studies showed that PGE2 up-regulates the production of IL-10 by macrophages and T cells PMID: 16978535,1940799 In monocytes, IL-10 synthesis was found to be enhanced after LPS exposure, suggesting that IL-10 may regulate the inflammatory response to LPS.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c55 : 1
stoichiometry:c56 : 1
stoichiometry:c58 : 1
m25*m16*0.1
nodelay
--
0
PMID: 16978535,11859113 Using EP receptor-selective synthetic agonists and dibutyryl cAMP, we demonstrated that PGE2-EP2 and -EP4 signaling stimulate the production of IL-10 by BM-DC
p21
p21
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c64 : 1
stoichiometry:c65 : 1
stoichiometry:c66 : 1
m155666*0.1
nodelay
--
0
PMID: 16978535 In fact, microbial products such as LPS activate TLR4-derived signaling pathways including NF-KappaB and/or MAPK, which results in the induction of cyclooxygenase (COX)-2 and the production of PGE2 PMID: 16978535 Figure 1
p22
p22
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c67 : 1
stoichiometry:c68 : 1
stoichiometry:c69 : 1
m29*m30*0.1
nodelay
--
0
PMID: 16978535 In fact, microbial products such as LPS activate TLR4-derived signaling pathways including NF-KappaB and/or MAPK, which results in the induction of cyclooxygenase (COX)-2 and the production of PGE2 PMID: 16978535 Figure 1
p22
p23
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c70 : 1
stoichiometry:c71 : 1
stoichiometry:c72 : 1
m29*m1812*0.1
nodelay
--
0
PMID: 16978535 In fact, microbial products such as LPS activate TLR4-derived signaling pathways including NF-KappaB and/or MAPK, which results in the induction of cyclooxygenase (COX)-2 and the production of PGE2 PMID: 16978535 Figure 1
p24
p24
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c73 : 1
stoichiometry:c75 : 1
stoichiometry:c116 : 1
stoichiometry:c127 : 1
stoichiometry:c128 : 1
stoichiometry:c74 : 1
m33*m31*0.1
nodelay
--
0
PMID: 16978535 In fact, microbial products such as LPS activate TLR4-derived signaling pathways including NF-KappaB and/or MAPK, which results in the induction of cyclooxygenase (COX)-2 and the production of PGE2 PMID: 16978535 Figure 1 PMID: 16978535 Pro-inflammatory cytokines, such as TNF-¦Á are also able to induce COX-2 expression and PGE2 production by cells of immune system, particularly DC. PMID: 16978535,15219461 Moreover, we have recently demonstrated that IL-10 suppresses COX-2 protein expression and PG production in BM-DC PMID: 16978535 Antiinflammatory cytokines, such as IL-4, IL-13, and IL-10 can inhibit COX-2 induction.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c76 : 1
stoichiometry:c77 : 1
stoichiometry:c78 : 1
m33*m32*0.1
nodelay
--
0
PMID: 16978535 In fact, microbial products such as LPS activate TLR4-derived signaling pathways including NF-KappaB and/or MAPK, which results in the induction of cyclooxygenase (COX)-2 and the production of PGE2 PMID: 16978535 Figure 1
p26
p26
cso30:i:ME_UnknownProduction
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c79 : 1
stoichiometry:c117 : 1
stoichiometry:c80 : 1
m2122*0.1
nodelay
--
0
PMID: 16978535 In fact, microbial products such as LPS activate TLR4-derived signaling pathways including NF-KappaB and/or MAPK, which results in the induction of cyclooxygenase (COX)-2 and the production of PGE2 PMID: 16978535 Figure 1 PMID: 16978535,15219461 Moreover, we have recently demonstrated that IL-10 suppresses COX-2 protein expression and PG production in BM-DC PMID: 16978535 The COX enzyme exists in two isoforms: COX-1, a constitutive form that is expressed in multiple cell types and is thought to produce PGs central to physiologic homeostasis, and COX-2, an inducible form that is rapidly up-regulated in response to inflammatory stimuli and is responsible for the production of large amounts of PGs at the inflammation site. PMID: 16978535 PGE2 and NO are two pleiotropic mediators produced at inflammatory sites by the inducible enzymes, COX-2 and nitric oxide synthase (iNOS), respectively.
p27
p27
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c82 : 1
stoichiometry:c81 : 1
m230*0.1
nodelay
--
0
PMID: 16978535 Pro-inflammatory cytokines, such as TNF-alpha are also able to induce COX-2 expression and PGE2 production by cells of immune system, particularly DC.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c83 : 1
stoichiometry:c84 : 1
stoichiometry:c85 : 1
m34*m15*0.1
nodelay
--
0
PMID: 16978535 Since BM-DC express EP receptors at their surface, they become target to autocrine and paracrine PGE2, which by binding to EP2 and/or EP4 acts on DC and induces the production of endogenous IL-10.
p29
p29
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c86 : 1
stoichiometry:c153 : 1
stoichiometry:c88 : 1
m16*m94230*0.1
nodelay
--
0
PMID: 16978535 Since BM-DC express EP receptors at their surface, they become target to autocrine and paracrine PGE2, which by binding to EP2 and/or EP4 acts on DC and induces the production of endogenous IL-10.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c9 : 1
stoichiometry:c10 : 1
stoichiometry:c11 : 1
m346644*m5*0.1
nodelay
--
0
PMID: 16978535 Based on pharmacological and cDNA cloning studies, four subtypes of PGE receptors designated EP receptors (EP1, EP2, EP3 and EP4) have been identified and have been shown to differ in their signal transduction pathways.
p29
p30
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c89 : 1
stoichiometry:c90 : 1
stoichiometry:c98 : 1
m94230*m12*0.1
nodelay
--
0
PMID: 16978535 Since BM-DC express EP receptors at their surface, they become target to autocrine and paracrine PGE2, which by binding to EP2 and/or EP4 acts on DC and induces the production of endogenous IL-10.
p31
p31
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c87 : 1
stoichiometry:c91 : 1
stoichiometry:c92 : 1
m93589*0.1
nodelay
--
0
PMID: 16978535,11859113,7836930 We and other have demonstrated that PGE2 produced by DC is a potent inhibitor of human and murine IL-12 PMID: 16978535 The fact that PGE2 and IL-10 strongly inhibit the production of IL-12 implies a feedback mechanism at the level of the APC, and may represent an important mean controlling the differentiation of APC from bone marrow progenitors or from circulating monocytes.
p32
p32
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c94 : 1
stoichiometry:c152 : 1
stoichiometry:c95 : 1
m93248*0.1
nodelay
--
0
PMID: 16978535,11859113,15219461 We have previously reported that PGE2 inhibits the production of IL-6 and TNF-alpha via induction of endogenous IL-10
p33
p33
cso30:i:ME_Translation
cso30:i:CC_Cytoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c96 : 1
stoichiometry:c99 : 1
stoichiometry:c97 : 1
m93309*0.1
nodelay
--
0
PMID: 16978535,1611085,8070901,2651547,11602631 In macrophage, IL-6, a cytokine with critical role in maturation of humoral immune response, is positively regulated by PGE2, whereas TNF-alpha release is inhibited by PGE2 PMID: 16978535,11859113,15219461 We have previously reported that PGE2 inhibits the production of IL-6 and TNF-alpha via induction of endogenous IL-10
p34
p34
cso30:i:ME_UnknownProduction
cso30:i:CC_Cytoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c100 : 1
stoichiometry:c125 : 1
stoichiometry:c126 : 1
stoichiometry:c101 : 1
m5784*m44*0.1
nodelay
--
0
PMID: 16978535,12496393 We also demonstrated that leucotriene B4 (LTB4), a pro-inflammatory metabolite synthesized by the action of 5-Lipoxygenase (5-LO) enzyme, induces the production of IL-6 without any effect on TNF-alpha PMID: 16978535,12496393 We have previously reported that endogenous IL-10 inhibits the production of pro-inflammatory LTB4, which is synthesized from AA by the action of both 5-LO and Five-Lipoxygenaseactivating protein (FLAP) enzymes
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c105 : 1
stoichiometry:c106 : 1
m10*0.1
nodelay
--
0
p36
p36
cso30:i:ME_Translation
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c102 : 1
stoichiometry:c103 : 1
stoichiometry:c104 : 1
m341991*m93248*0.1
nodelay
--
0
PMID: 16978535,12496393 We also demonstrated that leucotriene B4 (LTB4), a pro-inflammatory metabolite synthesized by the action of 5-Lipoxygenase (5-LO) enzyme, induces the production of IL-6 without any effect on TNF-alpha
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c107 : 1
stoichiometry:c108 : 1
stoichiometry:c109 : 1
m36*m37*0.1
nodelay
--
0
PMID: 16978535,9463407 IL-10 exerts its actions through a heterodimeric membrane receptor formed by a binding chain (IL-10R1) and a transducing chain (IL-10R2, also known as a CFR2-4), whose mutual interaction activates a series of intracellular signaling molecules, including STAT protein
p37
p38
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c110 : 1
stoichiometry:c111 : 1
stoichiometry:c112 : 1
m2103*m38*0.1
nodelay
--
0
PMID: 16978535,9463407 IL-10 exerts its actions through a heterodimeric membrane receptor formed by a binding chain (IL-10R1) and a transducing chain (IL-10R2, also known as a CFR2-4), whose mutual interaction activates a series of intracellular signaling molecules, including STAT protein
p39
p39
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c113 : 1
stoichiometry:c114 : 1
stoichiometry:c115 : 1
m39*m1633*0.1
nodelay
--
0
PMID: 16978535,9463407 IL-10 exerts its actions through a heterodimeric membrane receptor formed by a binding chain (IL-10R1) and a transducing chain (IL-10R2, also known as a CFR2-4), whose mutual interaction activates a series of intracellular signaling molecules, including STAT protein
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c12 : 1
stoichiometry:c13 : 1
stoichiometry:c14 : 1
m346644*m6*0.1
nodelay
--
0
PMID: 16978535 Based on pharmacological and cDNA cloning studies, four subtypes of PGE receptors designated EP receptors (EP1, EP2, EP3 and EP4) have been identified and have been shown to differ in their signal transduction pathways.
p40
p40
cso30:i:ME_UnknownDegradation
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c118 : 1
stoichiometry:c119 : 1
stoichiometry:c120 : 1
m33*m38*0.1
nodelay
--
0
PMID: 16978535,7780157 For example, it has been reported that exogenous IL-10 may accelerate the degradation of COX-2 mRNA in human monocytes in vitro
p41
p41
cso30:i:ME_Translation
cso30:i:CC_Cytoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c121 : 1
stoichiometry:c123 : 1
stoichiometry:c124 : 1
stoichiometry:c122 : 1
m42*m155666*0.1
nodelay
--
0
PMID: 16978535,1827484 In contrast, IL-10 is an important inhibitor of pro-inflammatory cytokine synthesis in LPS-stimulated macrophages
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c129 : 1
stoichiometry:c130 : 1
m47*0.1
nodelay
--
0
PMID: 16978535 The COX enzyme exists in two isoforms: COX-1, a constitutive form that is expressed in multiple cell types and is thought to produce PGs central to physiologic homeostasis, and COX-2, an inducible form that is rapidly up-regulated in response to inflammatory stimuli and is responsible for the production of large amounts of PGs at the inflammation site.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c131 : 1
stoichiometry:c132 : 1
m48*0.1
nodelay
--
0
PMID: 16978535 PGE2 and NO are two pleiotropic mediators produced at inflammatory sites by the inducible enzymes, COX-2 and nitric oxide synthase (iNOS), respectively.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c133 : 1
stoichiometry:c134 : 1
stoichiometry:c135 : 1
m49*m63*0.1
nodelay
--
0
PMID: 16978535,10903767 NO can exert divergent effects on the constitutive and inducible isoforms of COX by activating COX-1 and inactivating COX-2 in murine macrophages
p45
p45
cso30:i:ME_UnknownInactivation
cso30:i:CC_Cytoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c136 : 1
stoichiometry:c138 : 1
stoichiometry:c137 : 1
m2122*m49*0.1
nodelay
--
0
p46
p46
cso30:i:ME_UnknownProduction
cso30:i:CC_Cytoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c139 : 1
stoichiometry:c141 : 1
stoichiometry:c140 : 1
m155666*0.1
nodelay
--
0
PMID: 16978535,10903767 Previous studies reported that PGE2 was able to inhibit the LPS-stimulated production of NO in J774 macrophages and murine peritoneal macrophages
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c142 : 1
stoichiometry:c143 : 1
stoichiometry:c145 : 1
stoichiometry:c144 : 1
m65*m66*0.1
nodelay
--
0
PMID: 16978535 The molecular mechanisms by which PGE2 possibly inhibits iNOS expression could be related to its ability to increase intracellular cAMP levels, which in turn inhibit NF-KappaB/DNA binding activity.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c147 : 1
stoichiometry:c146 : 1
m67*0.1
nodelay
--
0
PMID: 16978535 The molecular mechanisms by which PGE2 possibly inhibits iNOS expression could be related to its ability to increase intracellular cAMP levels, which in turn inhibit NF-KappaB/DNA binding activity.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c148 : 1
stoichiometry:c154 : 1
stoichiometry:c149 : 1
m68*0.1
nodelay
--
0
PMID: 16978535 The molecular mechanisms by which PGE2 possibly inhibits iNOS expression could be related to its ability to increase intracellular cAMP levels, which in turn inhibit NF-KappaB/DNA binding activity. PMID: 16978535,9862429 It has previously demonstrated that PGE2 potently suppresses macrophage NO production by preventing NF-¦ÊB activation
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c15 : 1
stoichiometry:c16 : 1
stoichiometry:c17 : 1
m346644*m13*0.1
nodelay
--
0
PMID: 16978535 Based on pharmacological and cDNA cloning studies, four subtypes of PGE receptors designated EP receptors (EP1, EP2, EP3 and EP4) have been identified and have been shown to differ in their signal transduction pathways.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c151 : 1
stoichiometry:c150 : 1
m230*0.1
nodelay
--
0
PMID: 16978535,15219461 Since TNF-alpha has been reported to induce iNOS expression and PGE2 potently suppresses TNF-alpha production, as we have already reported the inhibitory action of PGE2-cAMP system on NO production might be secondary to the inhibition of TNF-alpha generation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c155 : 1
stoichiometry:c156 : 1
stoichiometry:c157 : 1
m34*m6*0.1
nodelay
--
0
PMID: 16978535 Since BM-DC express EP receptors at their surface, they become target to autocrine and paracrine PGE2, which by binding to EP2 and/or EP4 acts on DC and induces the production of endogenous IL-10.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c18 : 1
stoichiometry:c19 : 1
stoichiometry:c20 : 1
stoichiometry:c41 : 1
m15*m346644*0.1
nodelay
--
0
PMID: 16978535 Based on pharmacological and cDNA cloning studies, four subtypes of PGE receptors designated EP receptors (EP1, EP2, EP3 and EP4) have been identified and have been shown to differ in their signal transduction pathways.
p7
p7
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c21 : 1
stoichiometry:c22 : 1
stoichiometry:c23 : 1
m11*m119*0.1
nodelay
--
0
PMID: 16978535 The EP1 receptor activates phospholipase C and phosphatidylinositol turnover and stimulates the release of intracellular calcium
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c24 : 1
stoichiometry:c25 : 1
m17*0.1
nodelay
--
0
PMID: 16978535 The EP1 receptor activates phospholipase C and phosphatidylinositol turnover and stimulates the release of intracellular calcium
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c26 : 1
stoichiometry:c27 : 1
m290230*0.1
nodelay
--
0
PMID: 16978535 The EP1 receptor activates phospholipase C and phosphatidylinositol turnover and stimulates the release of intracellular calcium
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--