Original Literature | Model OverView |
---|---|
Publication
Title
Shaping of monocyte and macrophage function by adenosine receptors.
Affiliation
Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.haskoge@umdnj.edu
Abstract
Adenosine is an endogenous purine nucleoside that, following its release intothe extracellular space, binds to specific adenosine receptors expressed on thecell surface. Adenosine appears in the extracellular space under metabolicallystressful conditions, which are associated with ischemia, inflammation, and celldamage. There are 4 types of adenosine receptors (A(1), A(2A), A(2B) and A(3))and all adenosine receptors are members of the G protein-coupled family ofreceptors. Adenosine receptors are expressed on monocytes and macrophages andthrough these receptors adenosine modulates monocyte and macrophage function.Since monocytes and macrophages are activated by the same danger signals thatcause accumulation of extracellular adenosine, adenosine receptors expressed onmacrophages represent a sensor system that provide monocytes and macrophageswith information about the stressful environment. Adenosine receptors, thus,allow monocytes and macrophages to fine-tune their responses to stressfulstimuli. Here, we review the consequences of adenosine receptor activation onmonocyte/macrophage function. We will detail the effect of stimulating thevarious adenosine receptor subtypes on macrophage differentiation/proliferation,phagocytosis, and tissue factor (TF) expression. We will also summarize ourknowledge of how adenosine impacts the production of extracellular mediatorssecreted by monocytes and macrophages in response to toll-like receptor (TLR)ligands and other inflammatory stimuli. Specifically, we will delineate howadenosine affects the production of superoxide, nitric oxide (NO), tumornecrosis factor-alpha, interleukin (IL)-12, IL-10, and vascular endothelialgrowth factor (VEGF). A deeper insight into the regulation of monocyte andmacrophage function by adenosine receptors should assist in developing newtherapies for inflammatory diseases.
PMID
17056121
|
Entity
TNF-alpha
--
MO000000289
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m230
10
infinite
0
InterPro | IPR003636 |
TRANSPATH | MO000000289 |
--
LPS
--
MO000016882
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m155666
10
infinite
0
TRANSPATH | MO000016882 |
--
adenosine
--
MO000017089
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m114924
10
infinite
0
TRANSPATH | MO000017089 |
--
IL-10
--
MO000017247
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m2103
10
infinite
0
InterPro | IPR000098 |
TRANSPATH | MO000017247 |
--
L-arginine
--
MO000038797
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m16983
10
infinite
0
DIP | 232 |
TRANSPATH | MO000038797 |
--
uric acid
--
MO000101324
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m74313
10
infinite
0
Affymetrix | 1175 |
TRANSPATH | MO000101324 |
--
--
e1
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane
--
--
--
csml-variable:Double
m1
0
infinite
0
--
--
e10
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytosol
--
--
--
csml-variable:Double
m10
0
infinite
0
--
adenosine kinase
--
e11
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m11
0
infinite
0
--
adenosine
--
e12
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m12
10
infinite
0
TRANSPATH | MO000017089 |
--
nucleoside transporter
--
e13
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m13
0
infinite
0
--
ATP
--
e14
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m14
0
infinite
0
--
ADP
--
e15
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m15
0
infinite
0
--
ADP
--
e16
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m16
0
infinite
0
--
AMP
--
e17
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m17
0
infinite
0
--
AMP
--
e18
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m18
0
infinite
0
--
CD39
--
e19
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m19
0
infinite
0
--
--
e2
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m2
0
infinite
0
--
CD73
--
e20
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m20
0
infinite
0
--
adenosine deaminase
--
e21
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m21
0
infinite
0
--
A1
--
e22
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m22
0
infinite
0
--
adenosine: A1
--
e23
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m23
0
infinite
0
--
A2A
--
e24
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m24
0
infinite
0
--
adenosine: A2A
--
e25
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m25
0
infinite
0
--
A2B
--
e26
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m26
0
infinite
0
--
adenosine:A2B
--
e27
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m27
0
infinite
0
--
A3
--
e28
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m28
0
infinite
0
--
adenosine:A3
--
e29
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m29
0
infinite
0
--
--
e3
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
--
csml-variable:Double
m3
0
infinite
0
--
PKA
--
e30
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m30
0
infinite
0
--
PKA{active}
--
e31
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m31
0
infinite
0
--
Fc receptor
--
e32
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m32
0
infinite
0
--
IgG
--
e33
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m33
0
infinite
0
--
IgG:Fc receptor
--
e34
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m34
0
infinite
0
--
adenosine receptor
--
e35
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m35
0
infinite
0
--
NECA:adenosine receptor
--
e36
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m36
0
infinite
0
--
csml-variable:Double
m37
0
infinite
0
--
A1:CPA
--
e38
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m38
0
infinite
0
--
csml-variable:Double
m39
0
infinite
0
--
--
e4
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m4
0
infinite
0
--
H2O2
--
e40
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m40
0
infinite
0
--
fLMP
--
e41
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m41
0
infinite
0
--
IFN-gamma
--
e42
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m42
0
infinite
0
--
nitric oxide
--
e43
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m43
0
infinite
0
--
csml-variable:Double
m44
0
infinite
0
--
CCPA:A1
--
e45
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m45
0
infinite
0
--
csml-variable:Double
m46
0
infinite
0
--
CGS 21680:A2A
--
e47
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m47
0
infinite
0
--
VEGF
--
e48
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m48
0
infinite
0
--
LPS:TLR4
--
e49
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m49
0
infinite
0
--
ATP
--
e5
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m5
0
infinite
0
--
--
e50
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelopeLumen
--
--
--
csml-variable:Double
m50
0
infinite
0
--
--
e51
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearPore
--
--
--
csml-variable:Double
m51
0
infinite
0
--
--
e52
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearInnerMembrane
--
--
--
csml-variable:Double
m52
0
infinite
0
--
--
e53
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearLumen
--
--
--
csml-variable:Double
m53
0
infinite
0
--
--
e54
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearOuterMembrane
--
--
--
csml-variable:Double
m54
0
infinite
0
--
--
e55
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleus
--
--
--
csml-variable:Double
m55
0
infinite
0
--
--
e56
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleoplasm
--
--
--
csml-variable:Double
m56
0
infinite
0
--
--
e57
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearBody
--
--
--
csml-variable:Double
m57
0
infinite
0
--
--
e58
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleolus
--
--
--
csml-variable:Double
m58
0
infinite
0
--
--
e59
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelope
--
--
--
csml-variable:Double
m59
0
infinite
0
--
5¡ì-nucleotidase
--
e6
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m6
0
infinite
0
--
--
e60
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Chromatin
--
--
--
csml-variable:Double
m60
0
infinite
0
--
--
e61
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearChromosome
--
--
--
csml-variable:Double
m61
0
infinite
0
--
--
e62
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearCentromere
--
--
--
csml-variable:Double
m62
0
infinite
0
--
IL-12p40
--
e63
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m63
0
infinite
0
--
IB-MECA
--
e64
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m64
0
infinite
0
--
IB-MECA:A3
--
e65
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m65
0
infinite
0
--
PI3K{active}
--
e66
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m67
10
infinite
0
TRANSPATH | MO000000030 |
--
csml-variable:Double
m70
0
infinite
0
--
IL-10
--
e69
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m71
0
infinite
0
--
--
e7
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell
--
--
--
csml-variable:Double
m7
0
infinite
0
--
Adenylate cyclase{active}
--
e70
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m72
0
infinite
0
--
Adenylate cyclase
--
e71
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m73
0
infinite
0
--
cAMP
--
e72
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
csml-variable:Double
m74
0
infinite
0
--
csml-variable:Double
m75
0
infinite
0
--
dilazep:A2A
--
e74
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m76
0
infinite
0
--
TF
--
e75
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m77
0
infinite
0
--
TF
--
e76
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m78
0
infinite
0
--
csml-variable:Double
m79
0
infinite
0
--
csml-variable:Double
m80
0
infinite
0
--
csml-variable:Double
m81
0
infinite
0
--
--
e8
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell_WithoutCellWall_
--
--
--
csml-variable:Double
m8
0
infinite
0
--
--
e9
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytoplasm
--
--
--
csml-variable:Double
m9
0
infinite
0
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c1 : 1
stoichiometry:c9 : 1
stoichiometry:c2 : 1
m114924*m11*0.1
nodelay
--
0
PMID: 17056121, 11111829 Under hypoxic conditions, the increased intracellular dephosphorylation of adenosine 5¡ì-triphosphate (ATP) to adenosine by the metabolic enzyme 5¡ì-nucleotidase is accompanied by a suppression of the activity of the salvage enzyme adenosine kinase, which prevents the rephosphorylation of adenosine.
p10
p10
cso30:i:ME_MetabolicReaction
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c25 : 1
stoichiometry:c27 : 1
stoichiometry:c26 : 1
m114924*m21*0.1
nodelay
--
0
PMID: 17056121, 10623851, 2581508, 11223861, 15019271 Adenosine accumulation is limited by its catabolism to inosine by adenosine deaminase. Inosine is finally degraded to the stable end product uric acid.
p11
p11
cso30:i:ME_MetabolicReaction
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c28 : 1
stoichiometry:c29 : 1
m74305*0.1
nodelay
--
0
PMID: 17056121, 10623851, 2581508, 11223861, 15019271 Adenosine accumulation is limited by its catabolism to inosine by adenosine deaminase. Inosine is finally degraded to the stable end product uric acid.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c31 : 1
stoichiometry:c32 : 1
stoichiometry:c33 : 1
m22*m12*0.1
nodelay
--
0
PMID: 17056121 Lower concentrations of adenosine activate the high affinity A1, A2A, and A3 receptors, and high adenosine concentrations stimulate the low affinity A2B receptors.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c34 : 1
stoichiometry:c35 : 1
stoichiometry:c36 : 1
m24*m12*0.1
nodelay
--
0
PMID: 17056121 Lower concentrations of adenosine activate the high affinity A1, A2A, and A3 receptors, and high adenosine concentrations stimulate the low affinity A2B receptors.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c37 : 1
stoichiometry:c38 : 1
stoichiometry:c39 : 1
m26*m12*0.1
nodelay
--
0
PMID: 17056121 Lower concentrations of adenosine activate the high affinity A1, A2A, and A3 receptors, and high adenosine concentrations stimulate the low affinity A2B receptors.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c40 : 1
stoichiometry:c42 : 1
stoichiometry:c41 : 1
m28*m12*0.1
nodelay
--
0
PMID: 17056121 Lower concentrations of adenosine activate the high affinity A1, A2A, and A3 receptors, and high adenosine concentrations stimulate the low affinity A2B receptors.
p16
p16
cso30:i:CE_CellDifferentiation
cso30:i:CC_Cytosol
--
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c43 : 1
stoichiometry:c44 : 1
1.0*0.1
nodelay
--
0
PMID: 17056121, 956374 The first evidence supporting the concept that endogenous adenosine is capable of preventing human monocyte maturation was provided by demonstrating that adenosine deaminase activity is increased during early monocyte differentiation and that adenosine deaminase inhibition during this period delayed the maturation process. PMID: 17056121, 2159513 High concentrations of exogenous adenosine seem to prevent monocyte development into macrophages and arrest monocyte development at a stage with high accessory function, a phenotype that is similar to dendritic cells.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c45 : 1
stoichiometry:c47 : 1
stoichiometry:c46 : 1
m30*m27*0.1
nodelay
--
0
PMID: 17056121 The mechanism of action of adenosine involves induction, in a PKA-dependent manner, of the expression of p27kip-1, a cyclin-dependent kinase inhibitor that leads to growth arrest at the G1 phase of the cell cycle.
PMID: 17056121 The mechanism of action of adenosine involves induction, in a PKA-dependent manner, of the expression of p27kip-1, a cyclin-dependent kinase inhibitor that leads to growth arrest at the G1 phase of the cell cycle.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c49 : 1
stoichiometry:c48 : 1
m31*0.1
nodelay
--
0
PMID: 17056121 The mechanism of action of adenosine involves induction, in a PKA-dependent manner, of the expression of p27kip-1, a cyclin-dependent kinase inhibitor that leads to growth arrest at the G1 phase of the cell cycle.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c3 : 1
stoichiometry:c5 : 1
stoichiometry:c4 : 1
m5*m6*0.1
nodelay
--
0
PMID: 17056121, 11111829 Under hypoxic conditions, the increased intracellular dephosphorylation of adenosine 5¡ì-triphosphate (ATP) to adenosine by the metabolic enzyme 5¡ì-nucleotidase is accompanied by a suppression of the activity of the salvage enzyme adenosine kinase, which prevents the rephosphorylation of adenosine.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c51 : 1
stoichiometry:c52 : 1
stoichiometry:c53 : 1
m32*m33*0.1
nodelay
--
0
PMID: 17056121, 15466916 When a small particle is coated (opsonized) with IgG, the Fc regions of the IgG antibody molecules bind to Fc receptors that are expressed on the macrophage plasma membrane and trigger a phagocytic response.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c54 : 1
stoichiometry:c56 : 1
stoichiometry:c55 : 1
m35*m37*0.1
nodelay
--
0
PMID: 17056121 In human monocytes, the non-selective adenosine receptor agonist 5¡ì-N-ethylcarboxamidoadenosine (NECA) but not 2-p-(2-carboxyethyl)phenethylamino-5¡ì-N-ethyl-carboxamidoadenosine (CGS 21680), a selective agonist of A2A receptors, down-regulated the proliferation of human peripheral blood mononuclear cells obtained from healthy subjects.
p22
p22
cso30:i:CE_CellProliferation
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c57 : 1
stoichiometry:c61 : 1
1.0*0.1
nodelay
--
0
PMID: 17056121 In human monocytes, the non-selective adenosine receptor agonist 5¡ì-N-ethylcarboxamidoadenosine (NECA) but not 2-p-(2-carboxyethyl)phenethylamino-5¡ì-N-ethyl-carboxamidoadenosine (CGS 21680), a selective agonist of A2A receptors, down-regulated the proliferation of human peripheral blood mononuclear cells obtained from healthy subjects. PMID: 17056121, 10725262 On the other hand, the selective A1 receptor agonist N6-cyclopentyladenosine (CPA), but not other agonists, inhibited the proliferation of mononuclear cells in asthmatic patients.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c58 : 1
stoichiometry:c60 : 1
stoichiometry:c59 : 1
m22*m39*0.1
nodelay
--
0
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c63 : 1
stoichiometry:c64 : 1
stoichiometry:c62 : 1
m155666*0.1
nodelay
--
0
PMID: 17056121, 10496321, 14977938 Two later studies, one using fMLP and the other LPS to stimulate oxidative burst, confirmed that the effect of adenosine could be attributed primarily to A3 receptor stimulation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c66 : 1
stoichiometry:c67 : 1
stoichiometry:c65 : 1
m41*0.1
nodelay
--
0
PMID: 17056121, 10496321, 14977938 Two later studies, one using fMLP and the other LPS to stimulate oxidative burst, confirmed that the effect of adenosine could be attributed primarily to A3 receptor stimulation.
p26
p26
cso30:i:ME_Oxidation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c68 : 1
stoichiometry:c69 : 1
stoichiometry:c77 : 1
stoichiometry:c84 : 1
stoichiometry:c85 : 1
stoichiometry:c70 : 1
m16983*m5576*m155666*0.1
nodelay
--
0
PMID: 17056121, 8619882 Nitric oxide (NO) synthases (NOS) catalyze the oxidation of one of the guanidino nitrogens of l-arginine to the reactive nitrogen species NO. PMID: 17056121 Of the several NOS isoforms that can catalyze NO synthesis, iNOS is the primary one that is responsible for antimicrobial activity by producing high levels of NO. PMID: 17056121, 8906843 We demonstrated that both the selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) and A2A agonist CGS 21680 suppressed NO production by LPS-stimulated RAW264.7 macrophages, both with low efficacy.
p27
p27
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c72 : 1
stoichiometry:c71 : 1
m230*0.1
nodelay
--
0
PMID: 17056121, 1711326 Host expression of iNOS is first and foremost regulated at the transcriptional level and can be stimulated in response to microbial products or by cytokines such as IL-1, tumor necrosis factor-¦Á (TNF-¦Á) and interferon-¦Ã (IFN-¦Ã)
p28
p28
cso30:i:ME_GeneExpression
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c74 : 1
stoichiometry:c73 : 1
m185*0.1
nodelay
--
0
PMID: 17056121, 1711326 Host expression of iNOS is first and foremost regulated at the transcriptional level and can be stimulated in response to microbial products or by cytokines such as IL-1, tumor necrosis factor-¦Á (TNF-¦Á) and interferon-¦Ã (IFN-¦Ã)
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c76 : 1
stoichiometry:c86 : 1
stoichiometry:c75 : 1
m42*0.1
nodelay
--
0
PMID: 17056121, 1711326 Host expression of iNOS is first and foremost regulated at the transcriptional level and can be stimulated in response to microbial products or by cytokines such as IL-1, tumor necrosis factor-¦Á (TNF-¦Á) and interferon-¦Ã (IFN-¦Ã) PMID: 17056121, 10092821, 10510349 treatment of IFN-¦Ã-activated bone marrow macrophages with NECA decreased both iNOS induction and NO production in these cells.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c6 : 1
stoichiometry:c8 : 1
stoichiometry:c7 : 1
m114924*m13*0.1
nodelay
--
0
PMID: 17056121, 11396612, 11396615 These processes lead to adenosine reaching high concentrations inside the cell and the release of adenosine into the extracellular space through nucleoside transporters.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c78 : 1
stoichiometry:c79 : 1
stoichiometry:c80 : 1
m22*m44*0.1
nodelay
--
0
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c81 : 1
stoichiometry:c82 : 1
stoichiometry:c83 : 1
m46*m24*0.1
nodelay
--
0
PMID: 17056121, 8906843 We demonstrated that both the selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) and A2A agonist CGS 21680 suppressed NO production by LPS-stimulated RAW264.7 macrophages, both with low efficacy.
p32
p32
cso30:i:ME_Oxidation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c87 : 1
stoichiometry:c89 : 1
stoichiometry:c90 : 1
stoichiometry:c91 : 1
stoichiometry:c88 : 1
m16983*m5576*m42*0.1
nodelay
--
0
PMID: 17056121, 10092821, 10510349 treatment of IFN-¦Ã-activated bone marrow macrophages with NECA decreased both iNOS induction and NO production in these cells.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c93 : 1
stoichiometry:c103 : 1
stoichiometry:c92 : 1
m25*m49*0.1
nodelay
--
0
PMID: 17056121, 7945378 Stimulation of A2 receptors in U-937 human macrophages elicits VEGF mRNA accumulation. PMID: 17056121, 12057925 A2A receptor stimulation and LPS through TLR4 activation synergistically facilitated the production of VEGF.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c95 : 1
stoichiometry:c94 : 1
m27*0.1
nodelay
--
0
PMID: 17056121, 7945378 Stimulation of A2 receptors in U-937 human macrophages elicits VEGF mRNA accumulation.
p35
p35
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c96 : 1
stoichiometry:c97 : 1
stoichiometry:c98 : 1
m155666*m3961*0.1
nodelay
--
0
PMID: 17056121, 12057925 A2A receptor stimulation and LPS through TLR4 activation synergistically facilitated the production of VEGF.
p36
p36
cso30:i:ME_Translation
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c99 : 1
stoichiometry:c101 : 1
stoichiometry:c102 : 1
stoichiometry:c100 : 1
m48*m25*m49*0.1
nodelay
--
0
PMID: 17056121, 12057925 A2A receptor stimulation and LPS through TLR4 activation synergistically facilitated the production of VEGF.
p37
p37
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c106 : 1
stoichiometry:c108 : 1
stoichiometry:c110 : 1
stoichiometry:c140 : 1
stoichiometry:c105 : 1
m93309*m49*0.1
nodelay
--
0
PMID: 17056121 Adenosine is a strong inhibitor of TNF-¦Á production by monocytes and macrophages. PMID: 17056121 IL-10 was also described as cytokine synthesis inhibitory factor, because IL-10 can inhibit the secretion of a variety of proinflammatory cytokines, including TNF-¦Á and IL-12
p38
p38
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c107 : 1
stoichiometry:c109 : 1
stoichiometry:c195 : 1
stoichiometry:c196 : 1
stoichiometry:c197 : 1
stoichiometry:c198 : 1
stoichiometry:c194 : 1
stoichiometry:c104 : 1
m49*0.1
nodelay
--
0
PMID: 17056121 Adenosine is a strong inhibitor of TNF-¦Á production by monocytes and macrophages. PMID: 17056121, 12875990 The inhibitory effect of adenosine on TNF-¦Á production by macrophages is not limited to TLR4-mediated (LPS) induction of this cytokine because adenosine down-regulates TNF-¦Á production when induced by agonists of TLR2, TLR3, TLR4, TLR7 and TLR9. PMID: 17056121 adenosine receptor agonists were shown to suppress TNF-¦Á production by LPS (TLR4 ligand)-challenged human monocytes with the following rank order of potency: NECA > R-PIA = CGS 21680 > 2-CADO (2-chloroadenosine) = CHA (N6-cyclohexyladenosine). PMID: 17056121, 11023991 In addition, CGS 21680 potently decreased TNF-¦Á production by A2A WT macrophages but it failed to influence TNF-¦Á release by KO cells.
p39
p39
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c114 : 1
stoichiometry:c117 : 1
stoichiometry:c138 : 1
stoichiometry:c111 : 1
m49*0.1
nodelay
--
0
PMID: 17056121, 11023991 Using A2A receptor knockout mice, our group documented that adenosine down-regulates IL-12 p40 production by LPS-stimulated mouse peritoneal macrophages and that this effect is dependent, in part, on A2A receptors. PMID: 17056121 Further evidence implicating A2A receptors came from studies with human monocytes, in which CGS 21680 potently blunted LPS-induced IL-12 (both IL-12p40 and IL-12) production, which effect was reversed by A2A antagonists.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c10 : 1
stoichiometry:c30 : 1
stoichiometry:c11 : 1
m5*m155666*0.1
nodelay
--
0
PMID: 17056121, 8955160, 9553767, 10470068, 15319286, 15583013, 16697102 The other major pathway that contributes to high extracellular adenosine concentrations during metabolic stress is release of precursor adenine nucleotides (ATP, ADP and AMP) from the cell. This is followed by extracellular degradation to adenosine by a cascade of ectonucleotidases, which include CD39 (nucleoside triphosphate diphosphohydrolase [NTPDase]) and CD73 (5¡ì-ectonucleotidase). PMID: 17056121, 9759915 bacterial lipopolysaccharide (LPS) augmented the release of ATP from macrophages.
p40
p40
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c113 : 1
stoichiometry:c115 : 1
stoichiometry:c116 : 1
stoichiometry:c136 : 1
stoichiometry:c112 : 1
m93589*m49*0.1
nodelay
--
0
PMID: 17056121, 11023991 Using A2A receptor knockout mice, our group documented that adenosine down-regulates IL-12 p40 production by LPS-stimulated mouse peritoneal macrophages and that this effect is dependent, in part, on A2A receptors. PMID: 17056121 Further evidence implicating A2A receptors came from studies with human monocytes, in which CGS 21680 potently blunted LPS-induced IL-12 (both IL-12p40 and IL-12) production, which effect was reversed by A2A antagonists.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c118 : 1
stoichiometry:c119 : 1
stoichiometry:c120 : 1
m28*m64*0.1
nodelay
--
0
PMID: 17056121, 9822893 A3 receptor stimulation can also negatively regulate IL-12 production, because the selective A3 receptor agonist IB-MECA moderates IL-12 production both in LPS-treated mice. PMID: 17056121, 16116186 IB-MECA activated the phosophatidyl inositol-3-kinase (PI3K) pathway, and the activity of both PI3K and Akt was required for its suppressive effect
p42
p42
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c121 : 1
stoichiometry:c123 : 1
stoichiometry:c122 : 1
m66*m65*0.1
nodelay
--
0
PMID: 17056121, 9822893 A3 receptor stimulation can also negatively regulate IL-12 production, because the selective A3 receptor agonist IB-MECA moderates IL-12 production both in LPS-treated mice. PMID: 17056121, 16116186 IB-MECA activated the phosophatidyl inositol-3-kinase (PI3K) pathway, and the activity of both PI3K and Akt was required for its suppressive effect.
p43
p43
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c124 : 1
stoichiometry:c126 : 1
stoichiometry:c125 : 1
m68*m67*0.1
nodelay
--
0
PMID: 17056121, 9822893 A3 receptor stimulation can also negatively regulate IL-12 production, because the selective A3 receptor agonist IB-MECA moderates IL-12 production both in LPS-treated mice. PMID: 17056121, 16116186 IB-MECA activated the phosophatidyl inositol-3-kinase (PI3K) pathway, and the activity of both PI3K and Akt was required for its suppressive effect.
p44
p44
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c130 : 1
stoichiometry:c132 : 1
stoichiometry:c135 : 1
stoichiometry:c139 : 1
stoichiometry:c127 : 1
m49*0.1
nodelay
--
0
PMID: 17056121, 9822893 A3 receptor stimulation can also negatively regulate IL-12 production, because the selective A3 receptor agonist IB-MECA moderates IL-12 production both in LPS-treated mice. PMID: 17056121, 16116186 IB-MECA activated the phosophatidyl inositol-3-kinase (PI3K) pathway, and the activity of both PI3K and Akt was required for its suppressive effect. PMID: 17056121 Further evidence implicating A2A receptors came from studies with human monocytes, in which CGS 21680 potently blunted LPS-induced IL-12 (both IL-12p40 and IL-12) production, which effect was reversed by A2A antagonists.
p45
p45
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c129 : 1
stoichiometry:c131 : 1
stoichiometry:c133 : 1
stoichiometry:c134 : 1
stoichiometry:c137 : 1
stoichiometry:c141 : 1
stoichiometry:c128 : 1
m70*m49*0.1
nodelay
--
0
PMID: 17056121, 9822893 A3 receptor stimulation can also negatively regulate IL-12 production, because the selective A3 receptor agonist IB-MECA moderates IL-12 production both in LPS-treated mice. PMID: 17056121 Further evidence implicating A2A receptors came from studies with human monocytes, in which CGS 21680 potently blunted LPS-induced IL-12 (both IL-12p40 and IL-12) production, which effect was reversed by A2A antagonists. PMID: 17056121 IL-10 was also described as cytokine synthesis inhibitory factor, because IL-10 can inhibit the secretion of a variety of proinflammatory cytokines, including TNF-¦Á and IL-12
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c145 : 1
stoichiometry:c147 : 1
stoichiometry:c142 : 1
m49*m12*0.1
nodelay
--
0
PMID: 17056121, 8666814 In human monocytes activated with TNF-¦Á, H2O2, or LPS, adenosine up-regulated IL-10 production, an effect that was not mimicked by administering NECA, 2-CADO, or R-PIA
p47
p47
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c143 : 1
stoichiometry:c146 : 1
stoichiometry:c148 : 1
stoichiometry:c144 : 1
m71*m49*m12*0.1
nodelay
--
0
PMID: 17056121, 8666814 In human monocytes activated with TNF-¦Á, H2O2, or LPS, adenosine up-regulated IL-10 production, an effect that was not mimicked by administering NECA, 2-CADO, or R-P
p48
p48
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c152 : 1
stoichiometry:c161 : 1
stoichiometry:c149 : 1
m230*m12*0.1
nodelay
--
0
PMID: 17056121, 8666814 In human monocytes activated with TNF-¦Á, H2O2, or LPS, adenosine up-regulated IL-10 production, an effect that was not mimicked by administering NECA, 2-CADO, or R-PIA.
p49
p49
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c150 : 1
stoichiometry:c153 : 1
stoichiometry:c160 : 1
stoichiometry:c151 : 1
m71*m230*m12*0.1
nodelay
--
0
PMID: 17056121, 8666814 In human monocytes activated with TNF-¦Á, H2O2, or LPS, adenosine up-regulated IL-10 production, an effect that was not mimicked by administering NECA, 2-CADO, or R-PIA.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c12 : 1
stoichiometry:c13 : 1
m15*0.1
nodelay
--
0
PMID: 17056121, 8955160, 9553767, 10470068, 15319286, 15583013, 16697102 The other major pathway that contributes to high extracellular adenosine concentrations during metabolic stress is release of precursor adenine nucleotides (ATP, ADP and AMP) from the cell. This is followed by extracellular degradation to adenosine by a cascade of ectonucleotidases, which include CD39 (nucleoside triphosphate diphosphohydrolase [NTPDase]) and CD73 (5¡ì-ectonucleotidase).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c158 : 1
stoichiometry:c159 : 1
stoichiometry:c154 : 1
m40*m12*0.1
nodelay
--
0
PMID: 17056121, 8666814 In human monocytes activated with TNF-¦Á, H2O2, or LPS, adenosine up-regulated IL-10 production, an effect that was not mimicked by administering NECA, 2-CADO, or R-PIA.
p51
p51
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c155 : 1
stoichiometry:c157 : 1
stoichiometry:c162 : 1
stoichiometry:c156 : 1
m71*m40*m12*0.1
nodelay
--
0
PMID: 17056121, 8666814 In human monocytes activated with TNF-¦Á, H2O2, or LPS, adenosine up-regulated IL-10 production, an effect that was not mimicked by administering NECA, 2-CADO, or R-PIA.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c163 : 1
stoichiometry:c165 : 1
stoichiometry:c164 : 1
m73*m47*0.1
nodelay
--
0
PMID: 17056121 A2A receptor activation stimulates adenylate cyclase (AC) leading to elevated intracellular cAMP levels.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c167 : 1
stoichiometry:c168 : 1
stoichiometry:c166 : 1
m5*m72*0.1
nodelay
--
0
PMID: 17056121 A2A receptor activation stimulates adenylate cyclase (AC) leading to elevated intracellular cAMP levels.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c169 : 1
stoichiometry:c170 : 1
m74*0.1
nodelay
--
0
PMID: 17056121 A2A receptor activation augments IL-10 production by monocytes and macrophages through a cyclic adenosine monophosphate (cAMP)-mediated pathway
p55
p55
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c171 : 1
stoichiometry:c173 : 1
stoichiometry:c199 : 1
stoichiometry:c172 : 1
m71*m74*m25*0.1
nodelay
--
0
PMID: 17056121 A2A receptor activation augments IL-10 production by monocytes and macrophages through a cyclic adenosine monophosphate (cAMP)-mediated pathway.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c177 : 1
stoichiometry:c174 : 1
m27*0.1
nodelay
--
0
PMID: 17056121 A2B receptor activation also facilitates IL-10 production
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c175 : 1
stoichiometry:c178 : 1
stoichiometry:c176 : 1
m71*m27*0.1
nodelay
--
0
PMID: 17056121 A2B receptor activation also facilitates IL-10 production
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c179 : 1
stoichiometry:c180 : 1
stoichiometry:c181 : 1
m75*m24*0.1
nodelay
--
0
PMID: 17056121, 9310485, 15226179 In addition to its direct effects on platelets that are mediated via binding to A2A receptors, dilazep was reported to also block TF expression on monocytes and thereby inhibit blood coagulation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c186 : 1
stoichiometry:c182 : 1
1.0*0.1
nodelay
--
0
PMID: 17056121, 9310485, 15226179 In addition to its direct effects on platelets that are mediated via binding to A2A receptors, dilazep was reported to also block TF expression on monocytes and thereby inhibit blood coagulation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c14 : 1
stoichiometry:c15 : 1
m18*0.1
nodelay
--
0
PMID: 17056121, 8955160, 9553767, 10470068, 15319286, 15583013, 16697102 The other major pathway that contributes to high extracellular adenosine concentrations during metabolic stress is release of precursor adenine nucleotides (ATP, ADP and AMP) from the cell. This is followed by extracellular degradation to adenosine by a cascade of ectonucleotidases, which include CD39 (nucleoside triphosphate diphosphohydrolase [NTPDase]) and CD73 (5¡ì-ectonucleotidase).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c183 : 1
stoichiometry:c185 : 1
stoichiometry:c184 : 1
m77*0.1
nodelay
--
0
PMID: 17056121, 9310485, 15226179 In addition to its direct effects on platelets that are mediated via binding to A2A receptors, dilazep was reported to also block TF expression on monocytes and thereby inhibit blood coagulation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c190 : 1
stoichiometry:c193 : 1
stoichiometry:c187 : 1
m49*0.1
nodelay
--
0
PMID: 17056121, 12152652 Adenosine inhibits TF expression on LPS-stimulated human monocytes through the activation of A3 receptors, because IB-MECA is the most potent agonist in reducing TF expression and the mixed A1/A3 antagonist XAC, but not selective A1, A2A, or A2B antagonists prevented the effect of adenosine.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c189 : 1
stoichiometry:c191 : 1
stoichiometry:c192 : 1
stoichiometry:c188 : 1
m77*m49*0.1
nodelay
--
0
PMID: 17056121, 12152652 Adenosine inhibits TF expression on LPS-stimulated human monocytes through the activation of A3 receptors, because IB-MECA is the most potent agonist in reducing TF expression and the mixed A1/A3 antagonist XAC, but not selective A1, A2A, or A2B antagonists prevented the effect of adenosine.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c16 : 1
stoichiometry:c20 : 1
stoichiometry:c17 : 1
m14*m19*0.1
nodelay
--
0
PMID: 17056121, 8955160, 9553767, 10470068, 15319286, 15583013, 16697102 The other major pathway that contributes to high extracellular adenosine concentrations during metabolic stress is release of precursor adenine nucleotides (ATP, ADP and AMP) from the cell. This is followed by extracellular degradation to adenosine by a cascade of ectonucleotidases, which include CD39 (nucleoside triphosphate diphosphohydrolase [NTPDase]) and CD73 (5¡ì-ectonucleotidase).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c18 : 1
stoichiometry:c21 : 1
stoichiometry:c19 : 1
m16*m19*0.1
nodelay
--
0
PMID: 17056121, 8955160, 9553767, 10470068, 15319286, 15583013, 16697102 The other major pathway that contributes to high extracellular adenosine concentrations during metabolic stress is release of precursor adenine nucleotides (ATP, ADP and AMP) from the cell. This is followed by extracellular degradation to adenosine by a cascade of ectonucleotidases, which include CD39 (nucleoside triphosphate diphosphohydrolase [NTPDase]) and CD73 (5¡ì-ectonucleotidase).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c22 : 1
stoichiometry:c24 : 1
stoichiometry:c23 : 1
m17*m20*0.1
nodelay
--
0
PMID: 17056121, 8955160, 9553767, 10470068, 15319286, 15583013, 16697102 The other major pathway that contributes to high extracellular adenosine concentrations during metabolic stress is release of precursor adenine nucleotides (ATP, ADP and AMP) from the cell. This is followed by extracellular degradation to adenosine by a cascade of ectonucleotidases, which include CD39 (nucleoside triphosphate diphosphohydrolase [NTPDase]) and CD73 (5¡ì-ectonucleotidase).
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--