Original Literature | Model OverView |
---|---|
Publication
Title
The negative regulation of Toll-like receptor and associated pathways.
Affiliation
Centre for Functional Genomics and Human Disease, Monash Institute of MedicalResearch, Monash University, Victoria, Australia.
Abstract
Toll-like receptors (TLRs) are essential mediators of both innate and adaptiveimmunity by recognizing and eliciting responses upon invasion of pathogens. Theresponse of TLRs must be stringently regulated as exaggerated expression ofsignalling components as well as pro-inflammatory cytokines can have devastatingeffects on the host, resulting in chronic inflammatory diseases, autoimmunedisorders and aid in the pathogenesis of TLR-associated human diseases.Therefore, it is essential that negative regulators act at multiple levelswithin TLR signalling cascades, as well as through eliciting negative-feedbackmechanisms in order to synchronize the positive activation and negativeregulation of signal transduction to avert potentially harmful immunologicalconsequences. This review explores the various mechanisms employed by negativeregulators to ensure the appropriate modulation of both immune and inflammatoryresponses.
PMID
17621314
|
Entity
Process
MAPKs
--
MO000000077
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m69
10
infinite
0
TRANSPATH | MO000000077 |
--
TRAF6
--
MO000000212
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m183
10
infinite
0
InterPro | IPR001841 |
TRANSPATH | MO000000212 |
--
IRAK-1
--
MO000000213
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m184
10
infinite
0
InterPro | IPR000719 |
TRANSPATH | MO000000213 |
--
p50:RelA-p65:IkappaB-alpha{p}
--
MO000000254
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m208
10
infinite
0
TRANSPATH | MO000000254 |
--
TNF-alpha
--
MO000000289
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m230
10
infinite
0
InterPro | IPR003636 |
TRANSPATH | MO000000289 |
--
IRF-3
--
MO000007694
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m977
10
infinite
0
InterPro | IPR008984 |
TRANSPATH | MO000007694 |
--
MyD88
--
MO000016573
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m1572
10
infinite
0
InterPro | IPR000157 |
TRANSPATH | MO000016573 |
--
IKK-alpha:IKK-beta:IKK-gamma
--
MO000016661
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m1637
10
infinite
0
TRANSPATH | MO000016661 |
--
LPS
--
MO000016882
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m155666
10
infinite
0
TRANSPATH | MO000016882 |
--
SHP-2
--
MO000016886
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m1807
10
infinite
0
InterPro | IPR000242 |
TRANSPATH | MO000016886 |
--
TRAF4
--
MO000016964
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m1873
10
infinite
0
InterPro | IPR001841 |
TRANSPATH | MO000016964 |
--
SOCS-1
--
MO000017004
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m1906
10
infinite
0
InterPro | IPR001496 |
TRANSPATH | MO000017004 |
--
beta-arrestin
--
MO000017072
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m1964
10
infinite
0
TRANSPATH | MO000017072 |
--
beta-arrestin1
--
MO000017073
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m1965
10
infinite
0
InterPro | IPR000698 |
TRANSPATH | MO000017073 |
--
beta-arrestin2
--
MO000017074
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m1966
10
infinite
0
InterPro | IPR000698 |
TRANSPATH | MO000017074 |
--
IL-10
--
MO000017247
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m2103
10
infinite
0
InterPro | IPR000098 |
TRANSPATH | MO000017247 |
--
TGFbeta1
--
MO000017443
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m2269
10
infinite
0
InterPro | IPR002400 |
TRANSPATH | MO000017443 |
--
TLR2
--
MO000019397
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m3964
10
infinite
0
InterPro | IPR000157 |
TRANSPATH | MO000019397 |
--
ATF-3
--
MO000036861
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m15174
10
infinite
0
InterPro | IPR000837 |
TRANSPATH | MO000036861 |
--
p50:RelA-p65:IkappaB-alpha
--
MO000038724
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m16910
10
infinite
0
TRANSPATH | MO000038724 |
--
IRAK-4
--
MO000039077
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m17258
10
infinite
0
TRANSPATH | MO000039077 |
--
Tollip:IRAK
--
MO000039097
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m17273
10
infinite
0
TRANSPATH | MO000039097 |
--
TRIF
--
MO000041125
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m18998
10
infinite
0
TRANSPATH | MO000041125 |
--
CYLD
--
MO000041169
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m19042
10
infinite
0
TRANSPATH | MO000041169 |
--
IRF-3{p}
--
MO000041456
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m19324
10
infinite
0
TRANSPATH | MO000041456 |
--
DcTRAIL-R1
--
MO000043372
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m21137
10
infinite
0
TRANSPATH | MO000043372 |
--
TRIAD3
--
MO000061958
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m36851
10
infinite
0
TRANSPATH | MO000061958 |
--
MAL
--
MO000068831
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m43675
10
infinite
0
TRANSPATH | MO000068831 |
--
--
e1
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane
--
--
--
csml-variable:Double
m1
0
infinite
0
--
--
e10
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytosol
--
--
--
csml-variable:Double
m10
0
infinite
0
--
BTK
--
e100
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m107
0
infinite
0
--
GPCR ligand: GPCR
--
e101
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
csml-variable:Double
m108
0
infinite
0
--
GPCR ligand
--
e102
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m109
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin
--
e103
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m110
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: ERK1
--
e104
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m111
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: ERK2
--
e105
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m112
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: JNK
--
e106
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m113
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: p38
--
e107
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m114
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: ERK1{p}
--
e108
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m115
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: ERK2{p}
--
e109
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m116
0
infinite
0
--
ligand: TLR: MyD88
--
e11
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m13
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: JNK{p}
--
e110
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m117
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: p38{p}
--
e111
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m118
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: ERK1{p}{ub}
--
e112
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m119
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: ERK2{p}{ub}
--
e113
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m120
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: JNK{p}{ub}
--
e114
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m121
0
infinite
0
--
GPCR ligand: GPCR: beta-arrestin: p38{p}{ub}
--
e115
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m122
0
infinite
0
--
p50:RelA-p65:IkappaB-alpha: beta-arrestin-1
--
e116
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m123
0
infinite
0
--
p50:RelA-p65:IkappaB-alpha: beta-arrestin-2
--
e117
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m124
0
infinite
0
--
TRAF6: beta-arrestin-1
--
e118
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m125
0
infinite
0
--
TRAF6: beta-arrestin2
--
e119
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m126
0
infinite
0
--
TLR4: MD-2
--
e12
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
csml-variable:Double
m14
0
infinite
0
--
AP-1{activated}
--
e120
cso30:c:Protein
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m127
0
infinite
0
--
AP-1
--
e121
cso30:c:Protein
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m128
0
infinite
0
--
IL-8
--
e122
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m129
0
infinite
0
--
csml-variable:Double
m130
0
infinite
0
--
PI3K class III
--
e124
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m131
0
infinite
0
--
TGFbeta1: MyD88
--
e125
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m132
0
infinite
0
--
cytokine
--
e126
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m133
0
infinite
0
--
cytokine
--
e127
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m134
0
infinite
0
--
p53
--
e128
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m135
0
infinite
0
--
LIND
--
e129
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m136
0
infinite
0
--
LPS: CD14
--
e13
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m15
0
infinite
0
--
LIND: A20
--
e130
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m137
0
infinite
0
--
LIND
--
e131
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m138
0
infinite
0
--
ABIN-3
--
e132
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m139
0
infinite
0
--
Fliih
--
e133
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m140
0
infinite
0
--
Fliih: MyD88
--
e134
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m141
0
infinite
0
--
lipid A
--
e135
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m142
0
infinite
0
--
LPS: CD14: TLR4: MD-2: MAL: MyD88
--
e136
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m143
0
infinite
0
--
FLN29
--
e137
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m144
0
infinite
0
--
FLN29: TRAF6
--
e138
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m145
0
infinite
0
--
nitric oxide
--
e139
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m146
0
infinite
0
--
LPS: CD14: TLR4: MD-2
--
e14
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m16
0
infinite
0
--
MALP-2
--
e140
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m147
0
infinite
0
--
MALP-2: TLR2
--
e141
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m148
0
infinite
0
--
Pam3CSK-4
--
e142
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m149
0
infinite
0
--
Pam3CSK-4: TLR2
--
e143
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m150
0
infinite
0
--
CYLD
--
e144
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m151
0
infinite
0
--
CYLD: TRAF6
--
e145
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m152
0
infinite
0
--
TRAF6: CYLD
--
e146
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m153
0
infinite
0
--
DUSP
--
e147
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m154
0
infinite
0
--
DUSP: MAPKs
--
e148
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m155
0
infinite
0
--
DUSP-1
--
e149
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m156
0
infinite
0
--
LPS: CD14: TLR4: MD-2: MAL
--
e15
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m17
0
infinite
0
--
DUSP-2
--
e150
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m157
0
infinite
0
--
p38
--
e151
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m158
0
infinite
0
--
DUSP-2: P38
--
e152
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m159
0
infinite
0
--
DUSP-2: ERK
--
e153
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m160
0
infinite
0
--
DUSP-2: JNK
--
e154
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m161
0
infinite
0
--
JNK
--
e155
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m162
0
infinite
0
--
csml-variable:Double
m163
0
infinite
0
--
DUSP-2: PAC-1
--
e158
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m165
0
infinite
0
--
TAK1
--
e159
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m166
0
infinite
0
--
--
e16
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Endosome
--
--
--
csml-variable:Double
m18
0
infinite
0
--
IRAK-1{p}: IRAK-4: TRAF6{ub}: TAK1
--
e160
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m167
0
infinite
0
--
SHP-2: TAK1
--
e161
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m168
0
infinite
0
--
PIN-1
--
e162
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m169
0
infinite
0
--
PIN-1: IRF-3{p}
--
e163
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m170
0
infinite
0
--
PIN-1: IRF-3{p}{ub}
--
e164
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m171
0
infinite
0
--
p65
--
e165
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m172
0
infinite
0
--
PIN-1: p65
--
e166
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m173
0
infinite
0
--
PIN-1: p65{p}
--
e167
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m174
0
infinite
0
--
p65{p}
--
e168
cso30:c:Protein
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m175
0
infinite
0
--
SOCS-1: p65
--
e169
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m176
0
infinite
0
--
--
e17
cso30:c:EntityBiologicalCompartment
cso30:i:CC_EndosomeMembrane
--
--
--
csml-variable:Double
m19
0
infinite
0
--
p65{ub}
--
e170
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m177
0
infinite
0
--
Ubc13
--
e171
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m178
0
infinite
0
--
JNK{p}
--
e172
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m179
0
infinite
0
--
TRAF2
--
e173
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m180
0
infinite
0
--
TRAF2{ub}
--
e174
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m181
0
infinite
0
--
IKK-alpha:IKK-beta:IKK-gamma{ub}
--
e175
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m187
0
infinite
0
--
IKK-alpha:IKK-beta:IKK-gamma{p}
--
e176
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m188
0
infinite
0
--
DC-SIGN
--
e177
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m189
0
infinite
0
--
ManLAM
--
e178
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m190
0
infinite
0
--
ManLAM: DC-SIGN
--
e179
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m191
0
infinite
0
--
--
e18
cso30:c:EntityBiologicalCompartment
cso30:i:CC_EndosomeLumen
--
--
--
csml-variable:Double
m22
0
infinite
0
--
IL-10
--
e180
cso30:c:Rna
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m192
0
infinite
0
--
Raf1
--
e181
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m193
0
infinite
0
--
Raf1{activated}
--
e182
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m194
0
infinite
0
--
p50: RelA-p65{p}
--
e183
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m195
0
infinite
0
--
p50: RelA-p65{Ac}
--
e184
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m196
0
infinite
0
--
p47phox
--
e185
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m5
0
infinite
0
--
p47phox: TRAF4
--
e186
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m27
0
infinite
0
--
p47phox: TRIF: TRAF4: TRAF6: IRAK1:
--
e187
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m182
0
infinite
0
--
poly I: C
--
e19
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m23
0
infinite
0
--
--
e2
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m2
0
infinite
0
--
poly I: C: TLR3
--
e20
cso30:c:Complex
cso30:i:CC_EndosomeLumen
--
csml-variable:Double
m24
0
infinite
0
--
polyI: C: TLR3: TRIF
--
e21
cso30:c:Complex
cso30:i:CC_EndosomeMembrane
--
csml-variable:Double
m25
0
infinite
0
--
LPS: CD14: TLR4: MD-2: TRAM
--
e22
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m26
0
infinite
0
--
LPS: CD14: TLR4: MD-2: TRAM: TRIF
--
e23
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m28
0
infinite
0
--
PGN: TLR2
--
e24
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m29
0
infinite
0
--
PGN: TLR2: MAL
--
e25
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m30
0
infinite
0
--
sTLR
--
e26
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m31
0
infinite
0
--
ligand: sTLR
--
e27
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m32
0
infinite
0
--
SARM
--
e28
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m33
0
infinite
0
--
sTLR2
--
e29
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
csml-variable:Double
m34
0
infinite
0
--
--
e3
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
--
csml-variable:Double
m3
0
infinite
0
--
csml-variable:Double
m35
0
infinite
0
--
Lipoprotein
--
e31
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m36
0
infinite
0
--
Lipoprotein: sCD14
--
e32
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m37
0
infinite
0
--
Lipoprotein: sCD14: sTLR2
--
e33
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m38
0
infinite
0
--
ligand: TLR: MyD88: MyD88
--
e34
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m39
0
infinite
0
--
ligand: TLR: MyD88: MyD88: IRAK-1: IRAK-4
--
e35
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m40
0
infinite
0
--
MyD88s
--
e36
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m41
0
infinite
0
--
ligand: TLR: MyD88: MyD88s
--
e37
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m42
0
infinite
0
--
ligand: TLR: MyD88: MyD88: IRAK-1{p}: IRAK-4
--
e38
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m43
0
infinite
0
--
ligand: TLR: MyD88: MyD88: IRAK-1: Tollip-1: IRAK-4
--
e39
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m44
0
infinite
0
--
--
e4
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m4
0
infinite
0
--
IRAK-1{p}: IRAK-4
--
e40
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m45
0
infinite
0
--
IRAK-1{p}: IRAK-4: TRAF6
--
e41
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m46
0
infinite
0
--
ST2L: MAL
--
e42
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
csml-variable:Double
m47
0
infinite
0
--
MyD88: ST2L
--
e43
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m48
0
infinite
0
--
ssT2: ST2
--
e44
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
csml-variable:Double
m49
0
infinite
0
--
SIGIRR
--
e45
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m63
0
infinite
0
--
IL-1
--
e46
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m64
0
infinite
0
--
IL-1RI: IL-1RII
--
e47
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m65
0
infinite
0
--
IL-1: IL-1RI: IL-1RII
--
e48
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m66
0
infinite
0
--
IL-1: IL-1RI: IL-1RII: MyD88
--
e49
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m67
0
infinite
0
--
ligand
--
e5
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m11
0
infinite
0
--
--
e50
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelopeLumen
--
--
--
csml-variable:Double
m50
0
infinite
0
--
--
e51
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearPore
--
--
--
csml-variable:Double
m51
0
infinite
0
--
--
e52
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearInnerMembrane
--
--
--
csml-variable:Double
m52
0
infinite
0
--
--
e53
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearLumen
--
--
--
csml-variable:Double
m53
0
infinite
0
--
--
e54
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearOuterMembrane
--
--
--
csml-variable:Double
m54
0
infinite
0
--
--
e55
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleus
--
--
--
csml-variable:Double
m55
0
infinite
0
--
--
e56
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleoplasm
--
--
--
csml-variable:Double
m56
0
infinite
0
--
--
e57
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearBody
--
--
--
csml-variable:Double
m57
0
infinite
0
--
--
e58
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleolus
--
--
--
csml-variable:Double
m58
0
infinite
0
--
--
e59
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelope
--
--
--
csml-variable:Double
m59
0
infinite
0
--
ligand: TLR
--
e6
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m12
0
infinite
0
--
--
e60
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Chromatin
--
--
--
csml-variable:Double
m60
0
infinite
0
--
--
e61
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearChromosome
--
--
--
csml-variable:Double
m61
0
infinite
0
--
--
e62
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearCentromere
--
--
--
csml-variable:Double
m62
0
infinite
0
--
IL-1: IL-1RI: IL-1RII: MyD88: IRAK-1: Tollip: IRAK-4
--
e63
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m68
0
infinite
0
--
IL-1: IL-1RI: IL-1RII: MyD88: IRAK-1: IRAK-4: TRAF6
--
e64
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m70
0
infinite
0
--
IL-1: IL-1RI: IL-1RII: MyD88: IRAK-1: IRAK-4: TRAF6: SIGIRR
--
e65
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m71
0
infinite
0
--
p50:RelA-p65
--
e66
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m72
0
infinite
0
--
protein remnants
--
e67
cso30:c:EntityBiological
cso30:i:CC_Cytosol
--
csml-variable:Double
m73
0
infinite
0
--
p50:RelA-p65{nucleus}
--
e68
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m74
0
infinite
0
--
RP105: MD-1
--
e69
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
csml-variable:Double
m75
0
infinite
0
--
--
e7
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell
--
--
--
csml-variable:Double
m7
0
infinite
0
--
RP105: MD-1: TLR4: MD-2
--
e70
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m76
0
infinite
0
--
TRAIL
--
e71
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m78
0
infinite
0
--
TRAIL: DcTRAIL-R1
--
e72
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m79
0
infinite
0
--
csml-variable:Double
m80
0
infinite
0
--
IL-6: p50: RelA-p65
--
e74
cso30:c:Complex
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m81
0
infinite
0
--
SARM
--
e75
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m82
0
infinite
0
--
iL-33
--
e76
cso30:c:Protein
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m83
0
infinite
0
--
IL-23: ST2
--
e77
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m84
0
infinite
0
--
MAPKs{activated}
--
e78
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m85
10
infinite
0
TRANSPATH | MO000000077 |
--
--
e8
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell_WithoutCellWall_
--
--
--
csml-variable:Double
m8
0
infinite
0
--
LPS: sTLR4
--
e80
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
csml-variable:Double
m87
0
infinite
0
--
SARM: TRIF
--
e81
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m88
0
infinite
0
--
IL-1RAcP
--
e86
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m93
0
infinite
0
--
IL-1: IL-1RI: IL-1RII: IL-1RAcP
--
e87
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m94
0
infinite
0
--
csml-variable:Double
m95
0
infinite
0
--
TLR4
--
e89
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m96
0
infinite
0
--
--
e9
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytoplasm
--
--
--
csml-variable:Double
m9
0
infinite
0
--
Tollip-1: TLR4
--
e90
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
csml-variable:Double
m97
0
infinite
0
--
Tollip-1: TLR2
--
e91
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
csml-variable:Double
m98
0
infinite
0
--
ligand: TLR: MyD88: MyD88: IRAK-1: Tollip-1{p}: IRAK-4
--
e92
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m99
0
infinite
0
--
A20
--
e93
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m100
0
infinite
0
--
TNF-alpha{extracellular}
--
e94
cso30:c:Protein
cso30:i:CC_CellComponent
--
csml-variable:Double
m101
10
infinite
0
InterPro | IPR003636 |
TRANSPATH | MO000000289 |
--
IRAK-1{p}: IRAK-4: TRAF6{ub}
--
e95
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m102
0
infinite
0
--
RIP-1
--
e96
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m103
0
infinite
0
--
SOCS-1
--
e97
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m104
0
infinite
0
--
csml-variable:Double
m105
0
infinite
0
--
MAL: SOCS-1
--
e99
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m106
0
infinite
0
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c1 : 1
stoichiometry:c2 : 1
stoichiometry:c37 : 1
stoichiometry:c3 : 1
m3962*m11*0.1
nodelay
--
0
PMID: 17621314, 17048703, 11432202, 16807108 Although nearly all TLRs recruit MyD88, only some recruit Mal, TRAM and TRIF, giving rise to specificity in signalling. PMID: 17621314, 7848516 sTLRs compete with TLR agonists and are highly effective in the first line of negative regulation, as they directly attenuate TLR signalling and therefore prevent acute inflammatory responses.
p10
p10
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c28 : 1
stoichiometry:c29 : 1
stoichiometry:c30 : 1
m155701*m3964*0.1
nodelay
--
0
PMID: 17621314, 16230348 Upon stimulation with PGN, MALP-2 and Pam3CSK-4 (ligands of TLR-2), cells displayed an enhanced activation and expression of NF-kappaB, TNF-alpha, IL-1beta and IL-8.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c326 : 1
stoichiometry:c327 : 1
stoichiometry:c328 : 1
m1585*m136*0.1
nodelay
--
0
PMID: 17621314, 10385526, 11390377 LIND has been identified as an LPS-inducible A20-binding inhibitor of NFkappa-B and shares sequence homology to A20-binding inhibitor of NF-kappaB activation (ABIN)?1 and ABIN-2.
p101
p101
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c331 : 1
stoichiometry:c330 : 1
m155666*0.1
nodelay
--
0
PMID: 17621314, 10385526, 11390377 LIND has been identified as an LPS-inducible A20-binding inhibitor of NFkappa-B and shares sequence homology to A20-binding inhibitor of NF-kappaB activation (ABIN)?1 and ABIN-2.
p102
p102
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c334 : 1
stoichiometry:c335 : 1
stoichiometry:c337 : 1
stoichiometry:c336 : 1
m1572*m140*m142*0.1
nodelay
--
0
PMID: 17621314, 16424162 Flightless I homolog (Fliih), primarily expressed in the cytoplasm, was identified as a MyD88 interacting partner in murine macrophages stimulated with lipid A.
p103
p103
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c339 : 1
stoichiometry:c341 : 1
stoichiometry:c342 : 1
stoichiometry:c340 : 1
m17*m1572*0.1
nodelay
--
0
PMID: 17621314, 16424162 Co-immunoprecipitation studies using HEK-293T cells expressing TLR-4 showed that Fliih directly interferes with the interaction of MyD88 and TLR-4 upon LPS stimulation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c343 : 1
stoichiometry:c344 : 1
stoichiometry:c345 : 1
m144*m183*0.1
nodelay
--
0
PMID: 17621314 Further investigations using RAW cells overexpressing FLN29 showed an interaction with endogenous TRAF-6.
p105
p105
cso30:i:ME_UnknownProduction
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c349 : 1
stoichiometry:c351 : 1
stoichiometry:c350 : 1
m155666*0.1
nodelay
--
0
PMID: 17621314, 16221674 Mashima et al., found FLN29 overexpression in macrophage RAW cells stimulated with LPS caused a significant decrease in TNF-alpha and nitric oxide activation and production.
p106
p106
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c352 : 1
stoichiometry:c353 : 1
stoichiometry:c354 : 1
m3964*m147*0.1
nodelay
--
0
PMID: 17621314, 16230348 Upon stimulation with PGN, MALP-2 and Pam3CSK-4 (ligands of TLR-2), cells displayed an enhanced activation and expression of NF-kappaB, TNF-alpha, IL-1beta and IL-8.
p107
p107
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c355 : 1
stoichiometry:c357 : 1
stoichiometry:c356 : 1
m149*m3964*0.1
nodelay
--
0
PMID: 17621314, 16230348 Upon stimulation with PGN, MALP-2 and Pam3CSK-4 (ligands of TLR-2), cells displayed an enhanced activation and expression of NF-kappaB, TNF-alpha, IL-1beta and IL-8.
p108
p108
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c358 : 1
stoichiometry:c360 : 1
stoichiometry:c367 : 1
stoichiometry:c359 : 1
m16910*m30*0.1
nodelay
--
0
PMID: 17621314, 16230348 Upon stimulation with PGN, MALP-2 and Pam3CSK-4 (ligands of TLR-2), cells displayed an enhanced activation and expression of NF-kappaB, TNF-alpha, IL-1beta and IL-8. PMID: 17621314, 16230348 Yoshida et al. identified that CYLD is induced through recognition of TLR-2 ligands during bacterial infection, and is able to inhibit activation of both NF-kB and MAPK p38, leading to the subsequent inhibition of pro-inflammatory cytokines through a negative-feedback mechanism. .
p109
p109
cso30:i:ME_GeneExpression
cso30:i:CC_NuclearBody
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c362 : 1
stoichiometry:c493 : 1
stoichiometry:c361 : 1
m30*0.1
nodelay
--
0
PMID: 17621314, 16230348 Upon stimulation with PGN, MALP-2 and Pam3CSK-4 (ligands of TLR-2), cells displayed an enhanced activation and expression of NF-kappaB, TNF-alpha, IL-1beta and IL-8. PMID: 17621314, 11986301 sTLR-2 was found to inhibit IL-8 and tumour necrosis factor (TNF) through the direct interaction with co-receptor sCD14 following stimulation with bacterial lipopeptide.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c31 : 1
stoichiometry:c32 : 1
stoichiometry:c33 : 1
m29*m43675*0.1
nodelay
--
0
PMID: 17621314, 12447442, 12447441 Mal plays a critical role in host response as demonstrated by the total absence of pro-inflammatory cytokine production during either TLR-2 or TLR-4 signalling.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c364 : 1
stoichiometry:c363 : 1
m30*0.1
nodelay
--
0
PMID: 17621314, 16230348 Yoshida et al. identified that CYLD is induced through recognition of TLR-2 ligands during bacterial infection, and is able to inhibit activation of both NF-kB and MAPK p38, leading to the subsequent inhibition of pro-inflammatory cytokines through a negative-feedback mechanism. .
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c366 : 1
stoichiometry:c365 : 1
m151*0.1
nodelay
--
0
PMID: 17621314, 16230348 Yoshida et al. identified that CYLD is induced through recognition of TLR-2 ligands during bacterial infection, and is able to inhibit activation of both NF-kB and MAPK p38, leading to the subsequent inhibition of pro-inflammatory cytokines through a negative-feedback mechanism. .
p112
p112
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c368 : 1
stoichiometry:c370 : 1
stoichiometry:c371 : 1
stoichiometry:c369 : 1
m69*m30*0.1
nodelay
--
0
p113
p113
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c372 : 1
stoichiometry:c373 : 1
stoichiometry:c374 : 1
m183*m19042*0.1
nodelay
--
0
PMID: 17621314 Further co-immunoprecipitation studies demonstrated interactions of CYLD with TRAF-6 and TRAF-7, and colocalization studies confirmed this finding.
p114
p114
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c375 : 1
stoichiometry:c376 : 1
stoichiometry:c377 : 1
m39686*m19042*0.1
nodelay
--
0
PMID: 17621314 Further co-immunoprecipitation studies demonstrated interactions of CYLD with TRAF-6 and TRAF-7, and colocalization studies confirmed this finding.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c378 : 1
stoichiometry:c379 : 1
stoichiometry:c380 : 1
m69*m154*0.1
nodelay
--
0
PMID: 17621314, 10627275, 12184814 Eleven mammalian DUSPs have been identified to contain an MAPK binding domain and of those DUSP-1 and DUSP-2 (also known as phosphatase of activated cells-1 (PAC-1)) are most closely affiliated with immune cells.
p116
p116
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c381 : 1
stoichiometry:c388 : 1
stoichiometry:c189 : 1
stoichiometry:c382 : 1
m69*m167*0.1
nodelay
--
0
PMID: 17621314, 12444149, 15590669, 15485842 DUSP-1 overexpression in vitro using macrophages was shown to inhibit phosphorylation of MAPK resulting in the decreased expression of pro-inflammatory cytokines TNF-alpha and IL-6 in response to various TLR ligands.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c385 : 1
stoichiometry:c384 : 1
m85*0.1
nodelay
--
0
PMID: 17621314, 12444149, 15590669, 15485842 DUSP-1 overexpression in vitro using macrophages was shown to inhibit phosphorylation of MAPK resulting in the decreased expression of pro-inflammatory cytokines TNF-alpha and IL-6 in response to various TLR ligands.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c386 : 1
stoichiometry:c387 : 1
m85*0.1
nodelay
--
0
PMID: 17621314, 12444149, 15590669, 15485842 DUSP-1 overexpression in vitro using macrophages was shown to inhibit phosphorylation of MAPK resulting in the decreased expression of pro-inflammatory cytokines TNF-alpha and IL-6 in response to various TLR ligands.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c389 : 1
stoichiometry:c390 : 1
stoichiometry:c391 : 1
m158*m157*0.1
nodelay
--
0
PMID: 17621314 Furthermore, co-immunoprecipitation studies showed a physical interaction between DUSP-2 and p38, Jnk and Erk.
p12
p12
cso30:i:ME_Binding
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c34 : 1
stoichiometry:c35 : 1
stoichiometry:c36 : 1
m31*m11*0.1
nodelay
--
0
PMID: 17621314, 7848516 sTLRs compete with TLR agonists and are highly effective in the first line of negative regulation, as they directly attenuate TLR signalling and therefore prevent acute inflammatory responses.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c392 : 1
stoichiometry:c393 : 1
stoichiometry:c394 : 1
m157*m6*0.1
nodelay
--
0
PMID: 17621314 Furthermore, co-immunoprecipitation studies showed a physical interaction between DUSP-2 and p38, Jnk and Erk.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c396 : 1
stoichiometry:c397 : 1
stoichiometry:c395 : 1
m162*m157*0.1
nodelay
--
0
PMID: 17621314 Furthermore, co-immunoprecipitation studies showed a physical interaction between DUSP-2 and p38, Jnk and Erk.
p122
p122
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c383 : 1
stoichiometry:c400 : 1
stoichiometry:c404 : 1
stoichiometry:c469 : 1
stoichiometry:c399 : 1
m158*m167*m178*0.1
nodelay
--
0
PMID: 17621314 DUSP-2/PAC-1 is primarily known for its role in inactivating p38 and ERK in vitro.
p123
p123
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c402 : 1
stoichiometry:c405 : 1
stoichiometry:c398 : 1
stoichiometry:c403 : 1
m6*m167*0.1
nodelay
--
0
PMID: 17621314 DUSP-2/PAC-1 is primarily known for its role in inactivating p38 and ERK in vitro.
p124
p124
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c406 : 1
stoichiometry:c408 : 1
stoichiometry:c409 : 1
stoichiometry:c407 : 1
m158*m30*0.1
nodelay
--
0
PMID: 17621314 Co-immunoprecipitation studies using the HEK-293-TLR-2 cells showed that CYLD acted as a negative regulator of the MAPK p38 pathway, as CYLD inhibited PGN-induced phosphorylation of IkappaB-alpha, MKK3/6 and p38.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c410 : 1
stoichiometry:c411 : 1
stoichiometry:c416 : 1
stoichiometry:c412 : 1
m166*m102*0.1
nodelay
--
0
PMID: 17621314, 17157040 It was shown through a series of mutational analyses that SHP-2 could bind specifically to the N terminus of TBK-1 to exert inhibitory effects on downstream signalling, as the binding of SHP-2 to TBK-1 suppresses TBK-1-mediated phosphorylation and subsequent cytokine production.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c293 : 1
stoichiometry:c414 : 1
stoichiometry:c415 : 1
m1807*m166*0.1
nodelay
--
0
PMID: 17621314, 17157040 It was shown through a series of mutational analyses that SHP-2 could bind specifically to the N terminus of TBK-1 to exert inhibitory effects on downstream signalling, as the binding of SHP-2 to TBK-1 suppresses TBK-1-mediated phosphorylation and subsequent cytokine production.
p127
p127
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c417 : 1
stoichiometry:c421 : 1
stoichiometry:c423 : 1
stoichiometry:c418 : 1
m977*m25*0.1
nodelay
--
0
PMID: 17621314 IRF-3 activation was also shown to be inhibited in the presence of SHP-2 as RAW cells transfected with increasing doses of SHP-2 dose dependently decreased IRF-3 activation.
p128
p128
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c419 : 1
stoichiometry:c422 : 1
stoichiometry:c424 : 1
stoichiometry:c420 : 1
m977*m28*0.1
nodelay
--
0
PMID: 17621314 IRF-3 activation was also shown to be inhibited in the presence of SHP-2 as RAW cells transfected with increasing doses of SHP-2 dose dependently decreased IRF-3 activation.
p129
p129
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c132 : 1
stoichiometry:c427 : 1
stoichiometry:c436 : 1
stoichiometry:c124 : 1
m93217*m19324*0.1
nodelay
--
0
PMID: 17621314, 17157040 SH-2 containing protein tyrosine phosphatase-2 (SHP-2) has been implicated as a negative regulator of IFN-beta production through TLR-3 and TLR-4-mediated signalling. PMID: 17621314 This results in the inhibition of IRF-3 in response to TLR-3 and TLR-4.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c40 : 1
stoichiometry:c41 : 1
stoichiometry:c39 : 1
m36*m35*0.1
nodelay
--
0
PMID: 17621314, 11986301 sTLR-2 was found to inhibit IL-8 and tumour necrosis factor (TNF) through the direct interaction with co-receptor sCD14 following stimulation with bacterial lipopeptide.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c428 : 1
stoichiometry:c429 : 1
stoichiometry:c430 : 1
m169*m19324*0.1
nodelay
--
0
PMID: 17621314, 16699525 Peptidyl-prolyl isomerase (Pin)-1, consisting of a short N-terminal domain and a catalytic C-terminal domain is only able to directly interact with IRF-3 after IRF-3 has been phosphorylated on Ser 339.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c431 : 1
stoichiometry:c432 : 1
m170*0.1
nodelay
--
0
PMID: 17621314 The mechanism involved in negatively regulating IRF-3 is achieved by Pin-1 binding directly to IRF-3 leading to its polyubiquitination and subsequent proteosomal degradation.
p132
p132
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c433 : 1
stoichiometry:c434 : 1
stoichiometry:c435 : 1
m171*0.1
nodelay
--
0
PMID: 17621314 The mechanism involved in negatively regulating IRF-3 is achieved by Pin-1 binding directly to IRF-3 leading to its polyubiquitination and subsequent proteosomal degradation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c437 : 1
stoichiometry:c439 : 1
stoichiometry:c438 : 1
m172*m169*0.1
nodelay
--
0
PMID: 17621314, 14690596 Through mutational analyses of critical binding sites on the p65 subunit, the Thr254-Pro binding site was identified as critical for Pin-1 interactions.
p134
p134
cso30:i:ME_Translocation
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c442 : 1
stoichiometry:c443 : 1
stoichiometry:c444 : 1
m174*0.1
nodelay
--
0
PMID: 17621314 Without interactions at Thr-254, p65 cannot be phosphorylated, resulting in the p65 protein being unstable for the subsequent translocation into the nucleus and its targeting for proteosomal degradation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c440 : 1
stoichiometry:c441 : 1
m173*0.1
nodelay
--
0
PMID: 17621314 Without interactions at Thr-254, p65 cannot be phosphorylated, resulting in the p65 protein being unstable for the subsequent translocation into the nucleus and its targeting for proteosomal degradation.
p136
p136
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c445 : 1
stoichiometry:c446 : 1
m175*0.1
nodelay
--
0
PMID: 17621314 Without interactions at Thr-254, p65 cannot be phosphorylated, resulting in the p65 protein being unstable for the subsequent translocation into the nucleus and its targeting for proteosomal degradation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c447 : 1
stoichiometry:c449 : 1
stoichiometry:c448 : 1
m172*m1906*0.1
nodelay
--
0
PMID: 17621314 Further studies looking at the negative regulatory effects of SOCS-1 on p65 showed that SOCS-1 binds in an area of close proximity to that of Pin-1.
p138
p138
cso30:i:ME_Ubiquitination
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c450 : 1
stoichiometry:c455 : 1
stoichiometry:c451 : 1
stoichiometry:c452 : 1
m176*0.1
nodelay
--
0
PMID: 17621314 As SOCS-1 is known to polyubiquitination p65 and suppress NF-kappaB activation, Ryo et al. wanted to investigate if SOCS-1 had any effect on the stability and ubiquitination of p65 in the presence of Pin-1. PMID: 17621314 Overexpression studies both in vitro and in vivo of SOCS-1, SOCS-1 mutant and Pin-1 showed that Pin-1 protects p65 from SOCS-1 destabilization through blocking its degradation, and was also able to inhibit SOCS-1-mediated ubiquitination.
p139
p139
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c453 : 1
stoichiometry:c456 : 1
stoichiometry:c454 : 1
m177*0.1
nodelay
--
0
PMID: 17621314 Overexpression studies both in vitro and in vivo of SOCS-1, SOCS-1 mutant and Pin-1 showed that Pin-1 protects p65 from SOCS-1 destabilization through blocking its degradation, and was also able to inhibit SOCS-1-mediated ubiquitination.
p14
p14
cso30:i:ME_Binding
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c42 : 1
stoichiometry:c43 : 1
stoichiometry:c44 : 1
m37*m34*0.1
nodelay
--
0
PMID: 17621314, 11986301 sTLR-2 was found to inhibit IL-8 and tumour necrosis factor (TNF) through the direct interaction with co-receptor sCD14 following stimulation with bacterial lipopeptide.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c458 : 1
stoichiometry:c470 : 1
stoichiometry:c459 : 1
m162*m167*0.1
nodelay
--
0
PMID: 17621314 Results indicated that phosphorylation of Jnk and p38 was significantly reduced in Ubc13f l/f l Cd19 Cre B cells upon stimulation with anti-IgM compared to wild type.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c460 : 1
stoichiometry:c462 : 1
stoichiometry:c461 : 1
m180*m178*0.1
nodelay
--
0
PMID: 17621314, 11057907 Ubc13 E2 ubiquitin-conjugating enzyme is known to olyubiquitinate TRAF-2 and TRAF-6 through their attached K63 polyubiquitin chains.
p142
p142
cso30:i:ME_Ubiquitination
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c463 : 1
stoichiometry:c465 : 1
stoichiometry:c464 : 1
m1637*m167*0.1
nodelay
--
0
PMID: 17621314 TRAF-6 and TRAF-2 are involved in the ubiquitination of downstream adaptor molecule NF-kappaB essential modulator (NEMO) in response to antigen receptor induced NF-kappaB activation.
p143
p143
cso30:i:ME_Ubiquitination
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c466 : 1
stoichiometry:c468 : 1
stoichiometry:c467 : 1
m1637*m180*0.1
nodelay
--
0
PMID: 17621314 TRAF-6 and TRAF-2 are involved in the ubiquitination of downstream adaptor molecule NF-kappaB essential modulator (NEMO) in response to antigen receptor induced NF-kappaB activation.
p144
p144
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c471 : 1
stoichiometry:c473 : 1
stoichiometry:c474 : 1
stoichiometry:c472 : 1
m1637*m70*m178*0.1
nodelay
--
0
PMID: 17621314 Phosphorylation of signalling adaptor NEMO in vitro has been suggested to be dependent on Ubc13 under IL-1beta induction.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c475 : 1
stoichiometry:c476 : 1
stoichiometry:c477 : 1
m190*m189*0.1
nodelay
--
0
PMID: 17621314, 12974773 Studies have revealed that mycobacteria directly interact with DC-SIGN in order to regulate TLR-4 mediated signalling responses in DCs. PMID: 17621314, 12974773 Specifically the ligand responsible for modulating TLR-4 responses is ManLAM, a cell-wall component of Mycobacterium tuberculosis. The mechanism by which ManLAM negatively regulates TLR-4 is by binding to DC-SIGN, impairing LPS-induced DC maturation and the marked increase of IL-10 that has known immunosuppressive properties.
p146
p146
cso30:i:CE_CellDifferentiation
cso30:i:CC_Extracellular
--
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c478 : 1
stoichiometry:c479 : 1
m155666*0.1
nodelay
--
0
PMID: 17621314, 12974773 Specifically the ligand responsible for modulating TLR-4 responses is ManLAM, a cell-wall component of Mycobacterium tuberculosis. The mechanism by which ManLAM negatively regulates TLR-4 is by binding to DC-SIGN, impairing LPS-induced DC maturation and the marked increase of IL-10 that has known immunosuppressive properties.
p147
p147
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c481 : 1
stoichiometry:c482 : 1
stoichiometry:c480 : 1
m192*m191*0.1
nodelay
--
0
PMID: 17621314, 12974773 Specifically the ligand responsible for modulating TLR-4 responses is ManLAM, a cell-wall component of Mycobacterium tuberculosis. The mechanism by which ManLAM negatively regulates TLR-4 is by binding to DC-SIGN, impairing LPS-induced DC maturation and the marked increase of IL-10 that has known immunosuppressive properties.
p148
p148
cso30:i:ME_UnknownActivation
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c483 : 1
stoichiometry:c485 : 1
stoichiometry:c484 : 1
m193*m191*0.1
nodelay
--
0
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c486 : 1
stoichiometry:c488 : 1
stoichiometry:c487 : 1
m72*m194*0.1
nodelay
--
0
PMID: 17621314, 17462920 ManLAM binds DC-SIGN in human DCs modulating TLR signalling by activating the serine and threonine kinase Raf-1, allowing the subsequent phosphorylation and acetylation of the p65 unit of NF-kappaB. PMID: 17621314, 17462920 Further investigations revealed that the specific phosphorylation event of Ser 276 on p65 is critical for Raf-1-dependent acetylation and the prolonged transcription of the IL-10 gene.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c45 : 1
stoichiometry:c46 : 1
m13*0.1
nodelay
--
0
PMID: 17621314, 12538665 Subsequent studies showed the preferential recruitment of MyD88s-MyD88 heterodimers in favour of MyD88 homodimers, which allowed the recruitment of IRAK-1 resulting in the ablation of IRAK-1 phosphorylation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c489 : 1
stoichiometry:c490 : 1
m195*0.1
nodelay
--
0
PMID: 17621314, 17462920 ManLAM binds DC-SIGN in human DCs modulating TLR signalling by activating the serine and threonine kinase Raf-1, allowing the subsequent phosphorylation and acetylation of the p65 unit of NF-kappaB. PMID: 17621314, 17462920 Further investigations revealed that the specific phosphorylation event of Ser 276 on p65 is critical for Raf-1-dependent acetylation and the prolonged transcription of the IL-10 gene.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c492 : 1
stoichiometry:c491 : 1
m196*0.1
nodelay
--
0
PMID: 17621314 Two consequences of p65 acetylation are, first, the increased expression of IL-10 and, second, there is a prolonged activation of p65 and therefore prolonged NF-kappaB activity allowing increased transcription of the IL-10 gene.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c494 : 1
stoichiometry:c495 : 1
stoichiometry:c496 : 1
m5*m1873*0.1
nodelay
--
0
PMID: 17621314, 16052631 Takeshita et al., using cytosolic components of nicotinamide adenine dinucleotide phosphate oxidase, namely p47phox, p67phox, p40phox and rac2, described the interaction between p47phox and TRAF-4 resulting in the suppression of TLR-mediated signalling through TRAF-6 and TRIF.
p153
p153
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c498 : 1
stoichiometry:c499 : 1
stoichiometry:c500 : 1
stoichiometry:c501 : 1
stoichiometry:c502 : 1
stoichiometry:c497 : 1
m1873*m5*m183*m18998*m184*0.1
nodelay
--
0
PMID: 17621314, 16052631 Following this observation, co-immunoprecipitation studies confirmed a physical interaction with not only p47phox, but also with TRAF-6, TRIF and IRAK-1, suggesting that TRAF-4 is able to form complexes with these molecules. PMID: 17621314, 16052631 Possible mechanisms suggested by Takeshita et al., for the negative regulation of TLR-mediated signalling by NADH oxidase is via a novel TRAF?TRAF dimerization, through the interaction of p47phox with TRAF-4, TRAF-6 and TRIF.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c505 : 1
stoichiometry:c504 : 1
1.0*0.1
nodelay
--
0
PMID: 17621314 Furthermore, overexpression studies in HEK-293 cells cotransfected with TLR-2, TLR-3, TLR-4 and TLR-9, stimulated with their appropriate ligands and increasing doses of TRAF-4, resulted in luciferase analysis showing a decrease in activation of both NF-kappaB and the IFN-beta promoter, but not in TNF-alpha receptor-mediated signalling.
p16
p16
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c47 : 1
stoichiometry:c48 : 1
stoichiometry:c50 : 1
stoichiometry:c56 : 1
stoichiometry:c49 : 1
m184*m39*m17258*0.1
nodelay
--
0
PMID: 17621314, 12538665 Subsequent studies showed the preferential recruitment of MyD88s-MyD88 heterodimers in favour of MyD88 homodimers, which allowed the recruitment of IRAK-1 resulting in the ablation of IRAK-1 phosphorylation. PMID: 17621314, 12885415 This phosphorylation is normally mediated by IRAK-4, but in the presence of MyD88s, IRAK-4 is not recruited to the signalling complex.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c51 : 1
stoichiometry:c52 : 1
stoichiometry:c53 : 1
m41*m13*0.1
nodelay
--
0
PMID: 17621314, 12538665 Subsequent studies showed the preferential recruitment of MyD88s-MyD88 heterodimers in favour of MyD88 homodimers, which allowed the recruitment of IRAK-1 resulting in the ablation of IRAK-1 phosphorylation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c54 : 1
stoichiometry:c186 : 1
stoichiometry:c55 : 1
m40*0.1
nodelay
--
0
PMID: 17621314, 12885415 This phosphorylation is normally mediated by IRAK-4, but in the presence of MyD88s, IRAK-4 is not recruited to the signalling complex. PMID: 17621314, 11751856 Tollip also interacts with IRAK-1 leading to a decrease in IRAK-1 autophosphorylation and NF-kappaB activation.
p19
p19
cso30:i:ME_Dissociation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c57 : 1
stoichiometry:c63 : 1
stoichiometry:c58 : 1
stoichiometry:c59 : 1
m43*0.1
nodelay
--
0
PMID: 17621314, 12150927 It was also discovered in vitro that IRAK-M prevents dissociation of IRAK-1/IRAK-4 from the MyD88 receptor complex, therefore inhibiting the association of IRAK-1 with TRAF-6.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c4 : 1
stoichiometry:c6 : 1
stoichiometry:c5 : 1
m12*m1572*0.1
nodelay
--
0
PMID: 17621314, 17048703, 11432202, 16807108 Although nearly all TLRs recruit MyD88, only some recruit Mal, TRAM and TRIF, giving rise to specificity in signalling.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c62 : 1
stoichiometry:c60 : 1
stoichiometry:c346 : 1
stoichiometry:c61 : 1
m183*m45*0.1
nodelay
--
0
PMID: 17621314, 12150927 It was also discovered in vitro that IRAK-M prevents dissociation of IRAK-1/IRAK-4 from the MyD88 receptor complex, therefore inhibiting the association of IRAK-1 with TRAF-6. PMID: 17621314 The exact mechanism of how TRAF-6 is targeted for the negative regulation of TLR-mediated signalling by FLN29 is undefined, however, it is suggested that FLN29 may inhibit downstream of TRAF-6 based on current findings.
p21
p21
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c64 : 1
stoichiometry:c65 : 1
stoichiometry:c68 : 1
m43675*m22464*0.1
nodelay
--
0
PMID: 17621314, 15004556 This study showed a direct interaction between ST2L and MyD88 and Mal, but not TRIF or IRAK.
p22
p22
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c66 : 1
stoichiometry:c67 : 1
stoichiometry:c69 : 1
m22464*m1572*0.1
nodelay
--
0
PMID: 17621314, 15004556 This study showed a direct interaction between ST2L and MyD88 and Mal, but not TRIF or IRAK.
p23
p23
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c70 : 1
stoichiometry:c71 : 1
stoichiometry:c72 : 1
m22456*m3062*0.1
nodelay
--
0
PMID: 17621314, 11359817 sST2 binds to macrophages through a putative ST2 receptor.
p24
p24
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c75 : 1
stoichiometry:c77 : 1
stoichiometry:c73 : 1
m49*m155666*0.1
nodelay
--
0
PMID: 17621314, 15557191, 11359817 Following the addition of sST2 to LPS-stimulated macrophages, there was significant suppression of mRNA expression of TLR-1 and TLR-4, leading to reduced pro-inflammatory cytokine production.
p25
p25
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c76 : 1
stoichiometry:c78 : 1
stoichiometry:c313 : 1
stoichiometry:c74 : 1
m49*m155666*0.1
nodelay
--
0
PMID: 17621314, 15557191, 11359817 Following the addition of sST2 to LPS-stimulated macrophages, there was significant suppression of mRNA expression of TLR-1 and TLR-4, leading to reduced pro-inflammatory cytokine production. PMID: 17621314, 15623538 TGF-beta1 inhibits TLR-4 expression by suppressing LPS-mediated responses and is also able to induce MyD88 degradation through interactions via its DD.
p26
p26
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c80 : 1
stoichiometry:c79 : 1
m155666*0.1
nodelay
--
0
PMID: 17621314, 14993616 LPS stimulation in mouse models caused an increase in SIGIRR expression in various tissues, implicating its importance in the regulation of inflammatory responses.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c81 : 1
stoichiometry:c82 : 1
stoichiometry:c83 : 1
m65*m64*0.1
nodelay
--
0
PMID: 17621314, 12925853 Similarly to ST2, this suggests that SIGIRR acts on the MyD88-dependent pathway as SIGIRR has been shown to form complexes with IL-1 receptor complex molecules, IRAK and TRAF-6 upon IL-1 stimulation in vitro.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c86 : 1
stoichiometry:c176 : 1
stoichiometry:c85 : 1
m1572*m94*0.1
nodelay
--
0
PMID: 17621314, 12925853 Similarly to ST2, this suggests that SIGIRR acts on the MyD88-dependent pathway as SIGIRR has been shown to form complexes with IL-1 receptor complex molecules, IRAK and TRAF-6 upon IL-1 stimulation in vitro.
p29
p29
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c87 : 1
stoichiometry:c90 : 1
stoichiometry:c89 : 1
stoichiometry:c88 : 1
m67*m17258*m17273*0.1
nodelay
--
0
PMID: 17621314, 12925853 Similarly to ST2, this suggests that SIGIRR acts on the MyD88-dependent pathway as SIGIRR has been shown to form complexes with IL-1 receptor complex molecules, IRAK and TRAF-6 upon IL-1 stimulation in vitro. PMID: 17621314, 10854325 Toll-interacting protein (Tollip) is a protein which interacts with the IL-1R accessory protein and is responsible for bringing IRAK to the receptor complex.
p3
p3
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c7 : 1
stoichiometry:c8 : 1
stoichiometry:c9 : 1
m155666*m2828*0.1
nodelay
--
0
PMID: 17621314, 15557191 The mechanism involved in sTLR-4 inhibition to date is not fully understood, however, it has been hypothesized that sTLR-4 may block the interaction between TLR-4 and its co-receptors MD2 and CD14, leading to the termination of signalling.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c91 : 1
stoichiometry:c92 : 1
stoichiometry:c347 : 1
stoichiometry:c93 : 1
m68*m183*0.1
nodelay
--
0
PMID: 17621314, 12925853 Similarly to ST2, this suggests that SIGIRR acts on the MyD88-dependent pathway as SIGIRR has been shown to form complexes with IL-1 receptor complex molecules, IRAK and TRAF-6 upon IL-1 stimulation in vitro. PMID: 17621314 The exact mechanism of how TRAF-6 is targeted for the negative regulation of TLR-mediated signalling by FLN29 is undefined, however, it is suggested that FLN29 may inhibit downstream of TRAF-6 based on current findings.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c94 : 1
stoichiometry:c95 : 1
stoichiometry:c96 : 1
m70*m41575*0.1
nodelay
--
0
PMID: 17621314, 12925853 Similarly to ST2, this suggests that SIGIRR acts on the MyD88-dependent pathway as SIGIRR has been shown to form complexes with IL-1 receptor complex molecules, IRAK and TRAF-6 upon IL-1 stimulation in vitro.
p32
p32
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c97 : 1
stoichiometry:c104 : 1
stoichiometry:c105 : 1
stoichiometry:c113 : 1
stoichiometry:c273 : 1
stoichiometry:c278 : 1
stoichiometry:c333 : 1
stoichiometry:c98 : 1
m16910*m70*0.1
nodelay
--
0
PMID: 17621314, 14715412 It was also shown that the overexpression of SIGIRR in bone marrow-derived DCs leads to the inhibition of IL-1 and -18-mediated activation of NF-kappaB. PMID: 17621314, 15852007 This was also observed in vivo as NF-kappaB activation was downregulated. PMID: 17621314, 15125834, 15173580 For example, beta-arrestin-1 and beta-arrestin-2 have been shown to directly interact with IkappaB-alpha, preventing its phosphorylation and subsequent degradation, as well as blocking TNF-induced phosphorylation and degradation of IkappaB-alpha. PMID: 17621314, 15125834, 15173580 beta-arrestin-1 and beta-arrestin-2 have recently been identified as negative regulators of TLR-IL-1R-mediated signalling pathways augmenting NF-kappaB activation.
p33
p33
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c99 : 1
stoichiometry:c117 : 1
stoichiometry:c100 : 1
stoichiometry:c101 : 1
m208*0.1
nodelay
--
0
PMID: 17621314, 15589175 After initial activation of the TLR signalling pathways, TRAILR appears to stabilize IkappaB-alpha resulting in the decrease of nuclear translocation of NF-kappaB. PMID: 17621314, 15334086 A20, was originally associated with TNF mediated NF-kappaB activation, but has also been identified as a cysteine protease de-ubiquitylating protein able to prevent TLR signalling via TRAF-6. Ablation of TLR-mediated signalling is the result of the cleavage of a polyubiquitin chain in TRAF-6 that in turn inhibits NFkappaB translocation to the nucleus.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c102 : 1
stoichiometry:c103 : 1
m72*0.1
nodelay
--
0
PMID: 17621314, 15334086 A20, was originally associated with TNF mediated NF-kappaB activation, but has also been identified as a cysteine protease de-ubiquitylating protein able to prevent TLR signalling via TRAF-6. Ablation of TLR-mediated signalling is the result of the cleavage of a polyubiquitin chain in TRAF-6 that in turn inhibits NFkappaB translocation to the nucleus.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c121 : 1
stoichiometry:c122 : 1
m81*0.1
nodelay
--
0
PMID: 17621314, 16426569 This study showed that sST2 suppressed the production of IL-6, IL-1beta and TNF-alpha by binding to THP-1 cells, in turn reducing the binding affinity of NF-kappaB to the IL-6 promoter, leading to the degradation of IkappaB following LPS stimulation.
p36
p36
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c125 : 1
stoichiometry:c146 : 1
stoichiometry:c123 : 1
m74*0.1
nodelay
--
0
PMID: 17621314, 16426569 This study showed that sST2 suppressed the production of IL-6, IL-1beta and TNF-alpha by binding to THP-1 cells, in turn reducing the binding affinity of NF-kappaB to the IL-6 promoter, leading to the degradation of IkappaB following LPS stimulation. PMID: 17621314, 11986301 sTLR-2 was found to inhibit IL-8 and tumour necrosis factor (TNF) through the direct interaction with co-receptor sCD14 following stimulation with bacterial lipopeptide. PMID: 17621314, 16230348 Upon stimulation with PGN, MALP-2 and Pam3CSK-4 (ligands of TLR-2), cells displayed an enhanced activation and expression of NF-kappaB, TNF-alpha, IL-1beta and IL-8.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c126 : 1
stoichiometry:c426 : 1
m74*0.1
nodelay
--
0
PMID: 17621314, 16426569 This study showed that sST2 suppressed the production of IL-6, IL-1beta and TNF-alpha by binding to THP-1 cells, in turn reducing the binding affinity of NF-kappaB to the IL-6 promoter, leading to the degradation of IkappaB following LPS stimulation. PMID: 17621314, 16230348 Upon stimulation with PGN, MALP-2 and Pam3CSK-4 (ligands of TLR-2), cells displayed an enhanced activation and expression of NF-kappaB, TNF-alpha, IL-1beta and IL-8.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c147 : 1
stoichiometry:c149 : 1
stoichiometry:c148 : 1
m86*m155666*0.1
nodelay
--
0
PMID: 17621314, 11120784 It was demonstrated in mouse models that the presence of sTLR-4 following LPS stimulation inhibited NF-kappaB activation in vitro.
p39
p39
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c106 : 1
stoichiometry:c107 : 1
stoichiometry:c108 : 1
m1632*m6500*0.1
nodelay
--
0
PMID: 17621314, 16303092 In order for inhibitory effects to be exerted by RP105, it requires its own coreceptor MD1 before an interaction with the TLR-4/MD2 complex is possible.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c10 : 1
stoichiometry:c11 : 1
stoichiometry:c38 : 1
stoichiometry:c12 : 1
m15*m14*0.1
nodelay
--
0
PMID: 17621314, 15557191 The mechanism involved in sTLR-4 inhibition to date is not fully understood, however, it has been hypothesized that sTLR-4 may block the interaction between TLR-4 and its co-receptors MD2 and CD14, leading to the termination of signalling. PMID: 17621314, 15557191 The mechanism involved in sTLR-4 inhibition to date is not fully understood, however, it has been hypothesized that sTLR-4 may block the interaction between TLR-4 and its co-receptors MD2 and CD14, leading to the termination of signalling.
p40
p40
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c109 : 1
stoichiometry:c110 : 1
stoichiometry:c112 : 1
stoichiometry:c111 : 1
m75*m14*m155666*0.1
nodelay
--
0
PMID: 17621314, 16303092 In order for inhibitory effects to be exerted by RP105, it requires its own coreceptor MD1 before an interaction with the TLR-4/MD2 complex is possible. PMID: 17621314, 16303092 Divanovic et al., found that upon stimulation with LPS, RP105 directly interacts with the TLR-4/MD2 complex sequestering sites available for LPS binding.
p41
p41
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c114 : 1
stoichiometry:c115 : 1
stoichiometry:c116 : 1
m21137*m78*0.1
nodelay
--
0
PMID: 17621314, 15589175 After initial activation of the TLR signalling pathways, TRAILR appears to stabilize IkappaB-alpha resulting in the decrease of nuclear translocation of NF-kappaB.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c118 : 1
stoichiometry:c119 : 1
stoichiometry:c136 : 1
stoichiometry:c120 : 1
m80*m74*0.1
nodelay
--
0
PMID: 17621314, 16426569 This study showed that sST2 suppressed the production of IL-6, IL-1beta and TNF-alpha by binding to THP-1 cells, in turn reducing the binding affinity of NF-kappaB to the IL-6 promoter, leading to the degradation of IkappaB following LPS stimulation.
p43
p43
cso30:i:ME_Translation
cso30:i:CC_NuclearEnvelopeLumen
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c130 : 1
stoichiometry:c133 : 1
stoichiometry:c305 : 1
stoichiometry:c127 : 1
m93248*0.1
nodelay
--
0
PMID: 17621314, 16426569 This study showed that sST2 suppressed the production of IL-6, IL-1beta and TNF-alpha by binding to THP-1 cells, in turn reducing the binding affinity of NF-kappaB to the IL-6 promoter, leading to the degradation of IkappaB following LPS stimulation. PMID: 17621314, 16670302 PI3K class I enzymes were shown to affect NF-kappaB activation and IL-12 production, where as the class III PI3Ks were shown to be involved in both NF-kappaB activation as well as the production of IL-6, IL-12 and TNF-alpha. PMID: 17621314, 16670302 In recent studies by Kuo et al., they demonstrated that the class I and class III PI3K enzymes have distinct negative regulatory roles in TLR signalling in response to CpG DNA/ODN.
p44
p44
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c131 : 1
stoichiometry:c134 : 1
stoichiometry:c304 : 1
stoichiometry:c348 : 1
stoichiometry:c129 : 1
m93309*0.1
nodelay
--
0
PMID: 17621314, 16426569 This study showed that sST2 suppressed the production of IL-6, IL-1beta and TNF-alpha by binding to THP-1 cells, in turn reducing the binding affinity of NF-kappaB to the IL-6 promoter, leading to the degradation of IkappaB following LPS stimulation. PMID: 17621314, 16670302 PI3K class I enzymes were shown to affect NF-kappaB activation and IL-12 production, where as the class III PI3Ks were shown to be involved in both NF-kappaB activation as well as the production of IL-6, IL-12 and TNF-alpha. PMID: 17621314, 16670302 In recent studies by Kuo et al., they demonstrated that the class I and class III PI3K enzymes have distinct negative regulatory roles in TLR signalling in response to CpG DNA/ODN. PMID: 17621314, 16221674 Mashima et al., found FLN29 overexpression in macrophage RAW cells stimulated with LPS caused a significant decrease in TNF-alpha and nitric oxide activation and production.
p45
p45
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c135 : 1
stoichiometry:c425 : 1
stoichiometry:c128 : 1
m93364*0.1
nodelay
--
0
PMID: 17621314, 16426569 This study showed that sST2 suppressed the production of IL-6, IL-1beta and TNF-alpha by binding to THP-1 cells, in turn reducing the binding affinity of NF-kappaB to the IL-6 promoter, leading to the degradation of IkappaB following LPS stimulation.
p46
p46
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c137 : 1
stoichiometry:c138 : 1
stoichiometry:c139 : 1
m83*m22456*0.1
nodelay
--
0
p47
p47
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c140 : 1
stoichiometry:c142 : 1
stoichiometry:c274 : 1
stoichiometry:c280 : 1
stoichiometry:c141 : 1
m16910*m84*0.1
nodelay
--
0
PMID: 17621314, 16286016 It must be noted that there are conflicting reports on the actions of ST2, as Schmitz et al. recently described that ST2 was a receptor for the recently identified member of the IL-1 family namely IL-33, which exerts its biological effects via ST2 enhancing activation of NF-kappaB and MAPK. PMID: 17621314, 15125834, 15173580 For example, beta-arrestin-1 and beta-arrestin-2 have been shown to directly interact with IkappaB-alpha, preventing its phosphorylation and subsequent degradation, as well as blocking TNF-induced phosphorylation and degradation of IkappaB-alpha.
p48
p48
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c143 : 1
stoichiometry:c145 : 1
stoichiometry:c144 : 1
m69*m84*0.1
nodelay
--
0
PMID: 17621314, 16286016 It must be noted that there are conflicting reports on the actions of ST2, as Schmitz et al. recently described that ST2 was a receptor for the recently identified member of the IL-1 family namely IL-33, which exerts its biological effects via ST2 enhancing activation of NF-kappaB and MAPK.
p49
p49
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c150 : 1
stoichiometry:c152 : 1
stoichiometry:c272 : 1
stoichiometry:c277 : 1
stoichiometry:c151 : 1
m16910*m101*0.1
nodelay
--
0
PMID: 17621314, 15125834, 15173580 For example, beta-arrestin-1 and beta-arrestin-2 have been shown to directly interact with IkappaB-alpha, preventing its phosphorylation and subsequent degradation, as well as blocking TNF-induced phosphorylation and degradation of IkappaB-alpha.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c13 : 1
stoichiometry:c14 : 1
stoichiometry:c15 : 1
m43675*m16*0.1
nodelay
--
0
PMID: 17621314, 12447442, 12447441 Mal plays a critical role in host response as demonstrated by the total absence of pro-inflammatory cytokine production during either TLR-2 or TLR-4 signalling.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c154 : 1
stoichiometry:c155 : 1
stoichiometry:c153 : 1
m82*m155666*0.1
nodelay
--
0
PMID: 17621314 The treatment of cells with LPS resulted in significantly increased levels of SARM proteins, suggesting a mechanism for how SARM is involved in specifically regulating TRIF-dependent TLR-3 and TLR-4 inflammatory esponses through a negative-feedback mechanism.
p51
p51
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c156 : 1
stoichiometry:c158 : 1
stoichiometry:c159 : 1
stoichiometry:c157 : 1
m18998*m33*m155666*0.1
nodelay
--
0
PMID: 17621314 To date, it is still unclear in regards to the exact mechanism of how SARM inhibits TRIF function, however, it can be hypothesized from finding by Bowie and colleagues, who demonstrated that SARM and TRIF weakly interact in resting cells and upon LPS stimulation, increase in stability possibly preventing the recruitment of downstream effector molecules to TRIF.
p52
p52
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c162 : 1
stoichiometry:c164 : 1
stoichiometry:c168 : 1
stoichiometry:c170 : 1
stoichiometry:c172 : 1
stoichiometry:c275 : 1
stoichiometry:c279 : 1
stoichiometry:c165 : 1
m89*m16910*m155666*0.1
nodelay
--
0
PMID: 17621314, 15082713 IRAK-2a and IRAK-2b were found in overexpression studies to enhance NFkappaB activation. PMID: 17621314, 15082713 The overexpression of IRAK-2c and IRAK-2d, which lack the N-terminal DD, were shown in fibroblasts to have inhibitory effects on NF-kappaB activation following LPS stimulation. PMID: 17621314, 15125834, 15173580 For example, beta-arrestin-1 and beta-arrestin-2 have been shown to directly interact with IkappaB-alpha, preventing its phosphorylation and subsequent degradation, as well as blocking TNF-induced phosphorylation and degradation of IkappaB-alpha.
p53
p53
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c163 : 1
stoichiometry:c166 : 1
stoichiometry:c169 : 1
stoichiometry:c171 : 1
stoichiometry:c173 : 1
stoichiometry:c281 : 1
stoichiometry:c167 : 1
m90*m16910*m155666*0.1
nodelay
--
0
PMID: 17621314, 15082713 IRAK-2a and IRAK-2b were found in overexpression studies to enhance NFkappaB activation. PMID: 17621314, 15082713 The overexpression of IRAK-2c and IRAK-2d, which lack the N-terminal DD, were shown in fibroblasts to have inhibitory effects on NF-kappaB activation following LPS stimulation. PMID: 17621314, 15125834, 15173580 For example, beta-arrestin-1 and beta-arrestin-2 have been shown to directly interact with IkappaB-alpha, preventing its phosphorylation and subsequent degradation, as well as blocking TNF-induced phosphorylation and degradation of IkappaB-alpha.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c84 : 1
stoichiometry:c175 : 1
stoichiometry:c174 : 1
m66*m93*0.1
nodelay
--
0
PMID: 17621314, 10854325 Toll-interacting protein (Tollip) is a protein which interacts with the IL-1R accessory protein and is responsible for bringing IRAK to the receptor complex.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c177 : 1
stoichiometry:c178 : 1
stoichiometry:c179 : 1
m3964*m95*0.1
nodelay
--
0
PMID: 17621314, 11751856 There are three known isoforms of Tollip, however, Tollip-1 has been shown to bind TLR-2 and TLR-4, and in overexpression studies leads to the subsequent inhibition of NF-kappaB activation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c180 : 1
stoichiometry:c181 : 1
stoichiometry:c182 : 1
m95*m96*0.1
nodelay
--
0
PMID: 17621314, 11751856 There are three known isoforms of Tollip, however, Tollip-1 has been shown to bind TLR-2 and TLR-4, and in overexpression studies leads to the subsequent inhibition of NF-kappaB activation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c184 : 1
stoichiometry:c183 : 1
stoichiometry:c185 : 1
m40*m3973*0.1
nodelay
--
0
PMID: 17621314, 11751856 Tollip also interacts with IRAK-1 leading to a decrease in IRAK-1 autophosphorylation and NF-kappaB activation.
p58
p58
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c187 : 1
stoichiometry:c190 : 1
stoichiometry:c191 : 1
stoichiometry:c192 : 1
stoichiometry:c230 : 1
stoichiometry:c271 : 1
stoichiometry:c276 : 1
stoichiometry:c282 : 1
stoichiometry:c299 : 1
stoichiometry:c302 : 1
stoichiometry:c329 : 1
stoichiometry:c332 : 1
stoichiometry:c338 : 1
stoichiometry:c413 : 1
stoichiometry:c503 : 1
stoichiometry:c188 : 1
m16910*m187*0.1
nodelay
--
0
PMID: 17621314, 11751856 Tollip also interacts with IRAK-1 leading to a decrease in IRAK-1 autophosphorylation and NF-kappaB activation. PMID: 17621314, 11751856 There are three known isoforms of Tollip, however, Tollip-1 has been shown to bind TLR-2 and TLR-4, and in overexpression studies leads to the subsequent inhibition of NF-kappaB activation. PMID: 17621314, 15334086 A20, was originally associated with TNF mediated NF-kappaB activation, but has also been identified as a cysteine protease de-ubiquitylating protein able to prevent TLR signalling via TRAF-6. Ablation of TLR-mediated signalling is the result of the cleavage of a polyubiquitin chain in TRAF-6 that in turn inhibits NFkappaB translocation to the nucleus. PMID: 17621314 Investigators identified that SOCS-1 directly inhibits Mal-dependent p65 phosphorylation and subsequent NF-kappaB transactivation. PMID: 17621314, 15125834, 15173580 For example, beta-arrestin-1 and beta-arrestin-2 have been shown to directly interact with IkappaB-alpha, preventing its phosphorylation and subsequent degradation, as well as blocking TNF-induced phosphorylation and degradation of IkappaB-alpha. PMID: 17621314, 15125834, 15173580 beta-arrestin-1 and beta-arrestin-2 have recently been identified as negative regulators of TLR-IL-1R-mediated signalling pathways augmenting NF-kappaB activation. PMID: 17621314, 16378096 The binding of beta-arrestins to the TRAF-N domain in TRAF-6 prevents autoubiquitination, thus preventing downstream activation of NF-kappaB and AP- 1 Wang et al. PMID: 17621314, 16670302 PI3K class I enzymes were shown to affect NF-kappaB activation and IL-12 production, where as the class III PI3Ks were shown to be involved in both NF-kappaB activation as well as the production of IL-6, IL-12 and TNF-alpha. PMID: 17621314, 16670302 In recent studies by Kuo et al., they demonstrated that the class I and class III PI3K enzymes have distinct negative regulatory roles in TLR signalling in response to CpG DNA/ODN. PMID: 17621314, 10385526, 11390377 LIND has been identified as an LPS-inducible A20-binding inhibitor of NFkappa-B and shares sequence homology to A20-binding inhibitor of NF-kappaB activation (ABIN)?1 and ABIN-2. PMID: 17621314, 17088249 Subsequent coexpression studies using MyD88, IRAK-1, TRAF-6 and downstream IKKbeta with ABIN-3 revealed that ABIN-3 inhibits MyD88, IRAK-1 and TRAF-6-mediated NF-kappaB activation, however has no effect on IKKbeta induced activation. PMID: 17621314 Further investigations by Wang et al. revealed that Fliih was able to inhibit TLR-4?MyD88-dependent activation of NF-kappaB. PMID: 17621314 Furthermore, overexpression studies in HEK-293 cells cotransfected with TLR-2, TLR-3, TLR-4 and TLR-9, stimulated with their appropriate ligands and increasing doses of TRAF-4, resulted in luciferase analysis showing a decrease in activation of both NF-kappaB and the IFN-beta promoter, but not in TNF-alpha receptor-mediated signalling.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c193 : 1
stoichiometry:c194 : 1
m44*0.1
nodelay
--
0
PMID: 17621314 With decreasing levels of IRAK-1 phosphorylation, it has been observed there is an increase in Tollip phosphorylation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c16 : 1
stoichiometry:c17 : 1
stoichiometry:c18 : 1
m3965*m23*0.1
nodelay
--
0
PMID: 17621314 TRIF has been shown to be critical for signalling by lipopolysaccharide (LPS) via TLR-4 and for signalling by polyI:C via TLR-3, while TRAM was shown to be required for TLR-4 signalling only.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c195 : 1
stoichiometry:c196 : 1
stoichiometry:c197 : 1
m99*0.1
nodelay
--
0
PMID: 17621314, 11751856 This is though to be a mechanism that allows the release of Tollip from the Tollip/IRAK-1 complex resulting in the termination of its negative regulatory actions.
p61
p61
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c202 : 1
stoichiometry:c200 : 1
m155666*0.1
nodelay
--
0
PMID: 17621314, 1381359, 2118515 A20 is a zinc ring finger protein which is expressed in numerous cell types and rapidly increases in expression in response to LPS and TNF, implicating it as a possible regulator of inflammatory responses.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c199 : 1
stoichiometry:c201 : 1
m101*0.1
nodelay
--
0
PMID: 17621314, 1381359, 2118515 A20 is a zinc ring finger protein which is expressed in numerous cell types and rapidly increases in expression in response to LPS and TNF, implicating it as a possible regulator of inflammatory responses.
p63
p63
cso30:i:ME_Ubiquitination
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c198 : 1
stoichiometry:c204 : 1
stoichiometry:c289 : 1
stoichiometry:c290 : 1
stoichiometry:c457 : 1
stoichiometry:c203 : 1
m46*m178*0.1
nodelay
--
0
PMID: 17621314, 15334086 A20, was originally associated with TNF mediated NF-kappaB activation, but has also been identified as a cysteine protease de-ubiquitylating protein able to prevent TLR signalling via TRAF-6. Ablation of TLR-mediated signalling is the result of the cleavage of a polyubiquitin chain in TRAF-6 that in turn inhibits NFkappaB translocation to the nucleus. PMID: 17621314, 16378096 The binding of beta-arrestins to the TRAF-N domain in TRAF-6 prevents autoubiquitination, thus preventing downstream activation of NF-kappaB and AP- 1 Wang et al. PMID: 17621314, 11057907 Ubc13 E2 ubiquitin-conjugating enzyme is known to olyubiquitinate TRAF-2 and TRAF-6 through their attached K63 polyubiquitin chains.
p64
p64
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c206 : 1
stoichiometry:c207 : 1
stoichiometry:c209 : 1
m96*m36851*0.1
nodelay
--
0
PMID: 17621314, 15107846 Triad3A when overexpressed results in substantial degradation of TLR-4 and TLR-9, which lead to a decrease in signal transduction, but did not effect TLR-2 or TLR-3 mediated signalling.
p65
p65
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c205 : 1
stoichiometry:c208 : 1
stoichiometry:c210 : 1
m19828*m36851*0.1
nodelay
--
0
PMID: 17621314, 15107846 Triad3A when overexpressed results in substantial degradation of TLR-4 and TLR-9, which lead to a decrease in signal transduction, but did not effect TLR-2 or TLR-3 mediated signalling.
p66
p66
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c211 : 1
stoichiometry:c213 : 1
stoichiometry:c212 : 1
m43675*m36851*0.1
nodelay
--
0
PMID: 17621314, 16968706 Recent studies have also suggested that Triad3A is able to target other TIR domain-containing adaptors including RIP-1, TRIF and Mal.
p67
p67
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c214 : 1
stoichiometry:c215 : 1
stoichiometry:c218 : 1
m103*m36851*0.1
nodelay
--
0
PMID: 17621314, 16968706 Recent studies have also suggested that Triad3A is able to target other TIR domain-containing adaptors including RIP-1, TRIF and Mal.
p68
p68
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c216 : 1
stoichiometry:c217 : 1
m18998*0.1
nodelay
--
0
PMID: 17621314, 16968706 Recent studies have also suggested that Triad3A is able to target other TIR domain-containing adaptors including RIP-1, TRIF and Mal.
p69
p69
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c220 : 1
stoichiometry:c219 : 1
m155666*0.1
nodelay
--
0
PMID: 17621314, 12433365, 12433373 LPS induces SOC-1 expression in macrophages and SOCS-1-/- mice are hypersensitive to LPS-induced endotoxic shock.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c19 : 1
stoichiometry:c20 : 1
stoichiometry:c160 : 1
stoichiometry:c21 : 1
m24*m18998*0.1
nodelay
--
0
PMID: 17621314, 17048703, 16807108, 16698941 TRIF has been found to induce the expression of IFN-beta in response to TLR-4 and TLR-3 ligands. PMID: 17621314 To date, it is still unclear in regards to the exact mechanism of how SARM inhibits TRIF function, however, it can be hypothesized from finding by Bowie and colleagues, who demonstrated that SARM and TRIF weakly interact in resting cells and upon LPS stimulation, increase in stability possibly preventing the recruitment of downstream effector molecules to TRIF.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c226 : 1
stoichiometry:c222 : 1
m106*0.1
nodelay
--
0
PMID: 17621314, 16415872 Recent investigations by Mansell et al. have shown the mechanism for SOCS-1 directly regulating TLR-2 and TLR-4-mediated signalling by argeting Mal for polyubiquitination and subsequent proteosomal degradation.
p71
p71
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c224 : 1
stoichiometry:c225 : 1
stoichiometry:c229 : 1
m105*0.1
nodelay
--
0
PMID: 17621314, 16415872 Recent investigations by Mansell et al. have shown the mechanism for SOCS-1 directly regulating TLR-2 and TLR-4-mediated signalling by argeting Mal for polyubiquitination and subsequent proteosomal degradation.
p72
p72
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c221 : 1
stoichiometry:c223 : 1
stoichiometry:c228 : 1
stoichiometry:c227 : 1
m43675*m1906*m107*0.1
nodelay
--
0
PMID: 17621314, 16415872 Activation of Brunton¡Çs tyrosine kinase is critical for mediating the Mal and SOCS-1 interaction (acting as an E3 ubiquitin ligase) resulting in Mal polyubiquitination and subsequent proteosomal degradation.
p73
p73
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c231 : 1
stoichiometry:c233 : 1
stoichiometry:c232 : 1
m249*m109*0.1
nodelay
--
0
PMID: 17621314 The coupling of beta-arrestins to the GPCRs occurs following binding of a ligand to the appropriate receptor.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c234 : 1
stoichiometry:c235 : 1
stoichiometry:c236 : 1
m108*m1964*0.1
nodelay
--
0
PMID: 17621314, 10995467, 10725339, 11861753 Beta-arrestins are adaptor molecules that are able to form complexes with G protein?coupled receptors (GPCRs), are involved in the desensitization and endocytosis of various cell surface receptors as well as being shown to bind molecules involved in the MAP signalling pathway including Erk-1/-2, JNK, p38 and members of the Src kinase family.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c241 : 1
stoichiometry:c237 : 1
stoichiometry:c242 : 1
m549*m110*0.1
nodelay
--
0
PMID: 17621314, 10995467, 10725339, 11861753 Beta-arrestins are adaptor molecules that are able to form complexes with G protein?coupled receptors (GPCRs), are involved in the desensitization and endocytosis of various cell surface receptors as well as being shown to bind molecules involved in the MAP signalling pathway including Erk-1/-2, JNK, p38 and members of the Src kinase family. PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c243 : 1
stoichiometry:c238 : 1
stoichiometry:c244 : 1
m554*m110*0.1
nodelay
--
0
PMID: 17621314, 10995467, 10725339, 11861753 Beta-arrestins are adaptor molecules that are able to form complexes with G protein?coupled receptors (GPCRs), are involved in the desensitization and endocytosis of various cell surface receptors as well as being shown to bind molecules involved in the MAP signalling pathway including Erk-1/-2, JNK, p38 and members of the Src kinase family. PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c245 : 1
stoichiometry:c239 : 1
stoichiometry:c246 : 1
m21*m110*0.1
nodelay
--
0
PMID: 17621314, 10995467, 10725339, 11861753 Beta-arrestins are adaptor molecules that are able to form complexes with G protein?coupled receptors (GPCRs), are involved in the desensitization and endocytosis of various cell surface receptors as well as being shown to bind molecules involved in the MAP signalling pathway including Erk-1/-2, JNK, p38 and members of the Src kinase family. PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c247 : 1
stoichiometry:c240 : 1
stoichiometry:c248 : 1
m20*m110*0.1
nodelay
--
0
PMID: 17621314, 10995467, 10725339, 11861753 Beta-arrestins are adaptor molecules that are able to form complexes with G protein?coupled receptors (GPCRs), are involved in the desensitization and endocytosis of various cell surface receptors as well as being shown to bind molecules involved in the MAP signalling pathway including Erk-1/-2, JNK, p38 and members of the Src kinase family. PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c249 : 1
stoichiometry:c250 : 1
m111*0.1
nodelay
--
0
PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c22 : 1
stoichiometry:c23 : 1
stoichiometry:c24 : 1
m16*m19005*0.1
nodelay
--
0
PMID: 17621314 TRIF has been shown to be critical for signalling by lipopolysaccharide (LPS) via TLR-4 and for signalling by polyI:C via TLR-3, while TRAM was shown to be required for TLR-4 signalling only.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c251 : 1
stoichiometry:c252 : 1
m112*0.1
nodelay
--
0
PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c253 : 1
stoichiometry:c254 : 1
m113*0.1
nodelay
--
0
PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c255 : 1
stoichiometry:c256 : 1
m114*0.1
nodelay
--
0
PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c257 : 1
stoichiometry:c258 : 1
m115*0.1
nodelay
--
0
PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c259 : 1
stoichiometry:c260 : 1
m116*0.1
nodelay
--
0
PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c261 : 1
stoichiometry:c262 : 1
m117*0.1
nodelay
--
0
PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c263 : 1
stoichiometry:c264 : 1
m118*0.1
nodelay
--
0
PMID: 17621314 This results in the interaction of b-arrestins with the signalling complexes and the subsequent mediation of phosphorylation and ubiquitination of MAP kinase target molecules.
p87
p87
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c265 : 1
stoichiometry:c266 : 1
stoichiometry:c267 : 1
m1965*m16910*0.1
nodelay
--
0
PMID: 17621314, 15125834, 15173580 For example, beta-arrestin-1 and beta-arrestin-2 have been shown to directly interact with IkappaB-alpha, preventing its phosphorylation and subsequent degradation, as well as blocking TNF-induced phosphorylation and degradation of IkappaB-alpha.
p88
p88
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c268 : 1
stoichiometry:c270 : 1
stoichiometry:c269 : 1
m1966*m16910*0.1
nodelay
--
0
PMID: 17621314, 15125834, 15173580 For example, beta-arrestin-1 and beta-arrestin-2 have been shown to directly interact with IkappaB-alpha, preventing its phosphorylation and subsequent degradation, as well as blocking TNF-induced phosphorylation and degradation of IkappaB-alpha.
p89
p89
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c283 : 1
stoichiometry:c285 : 1
stoichiometry:c287 : 1
m183*m1965*0.1
nodelay
--
0
PMID: 17621314, 16378096 Wang et al., demonstrated using overexpression studies in HEK-293 cells, that beta-arrestin-1 and beta-arrestin-2 co-immunoprecipitated with TRAF-6, showing direct interactions.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c25 : 1
stoichiometry:c26 : 1
stoichiometry:c161 : 1
stoichiometry:c27 : 1
m18998*m26*0.1
nodelay
--
0
PMID: 17621314, 17048703, 16807108, 16698941 TRIF has been found to induce the expression of IFN-beta in response to TLR-4 and TLR-3 ligands. PMID: 17621314 To date, it is still unclear in regards to the exact mechanism of how SARM inhibits TRIF function, however, it can be hypothesized from finding by Bowie and colleagues, who demonstrated that SARM and TRIF weakly interact in resting cells and upon LPS stimulation, increase in stability possibly preventing the recruitment of downstream effector molecules to TRIF.
p90
p90
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c284 : 1
stoichiometry:c286 : 1
stoichiometry:c288 : 1
m183*m1966*0.1
nodelay
--
0
PMID: 17621314, 16378096 Wang et al., demonstrated using overexpression studies in HEK-293 cells, that beta-arrestin-1 and beta-arrestin-2 co-immunoprecipitated with TRAF-6, showing direct interactions.
p91
p91
cso30:i:ME_UnknownActivation
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c291 : 1
stoichiometry:c401 : 1
stoichiometry:c292 : 1
m128*m163*0.1
nodelay
--
0
PMID: 17621314, 16378096 The binding of beta-arrestins to the TRAF-N domain in TRAF-6 prevents autoubiquitination, thus preventing downstream activation of NF-kappaB and AP- 1 Wang et al.
p92
p92
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c294 : 1
stoichiometry:c296 : 1
stoichiometry:c297 : 1
stoichiometry:c298 : 1
stoichiometry:c295 : 1
m129*m155666*0.1
nodelay
--
0
PMID: 17621314, 17418896 Further studies also revealed that both bera-arrestin-1 and beta-arrestin-2 depletion using siRNA transfection resulted in the marked decrease of IL-8 production following LPS treatment.
p93
p93
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c301 : 1
stoichiometry:c303 : 1
stoichiometry:c306 : 1
stoichiometry:c300 : 1
m93589*0.1
nodelay
--
0
PMID: 17621314, 16670302 PI3K class I enzymes were shown to affect NF-kappaB activation and IL-12 production, where as the class III PI3Ks were shown to be involved in both NF-kappaB activation as well as the production of IL-6, IL-12 and TNF-alpha. PMID: 17621314, 16670302 PI3K class I enzymes were shown to affect NF-kappaB activation and IL-12 production, where as the class III PI3Ks were shown to be involved in both NF-kappaB activation as well as the production of IL-6, IL-12 and TNF-alpha. PMID: 17621314, 16670302 In recent studies by Kuo et al., they demonstrated that the class I and class III PI3K enzymes have distinct negative regulatory roles in TLR signalling in response to CpG DNA/ODN.
p94
p94
cso30:i:ME_Binding
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c307 : 1
stoichiometry:c308 : 1
stoichiometry:c309 : 1
m2269*m1572*0.1
nodelay
--
0
PMID: 17621314, 15623538 TGF-beta1 inhibits TLR-4 expression by suppressing LPS-mediated responses and is also able to induce MyD88 degradation through interactions via its DD.
p95
p95
cso30:i:ME_ProteasomeDegradation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c310 : 1
stoichiometry:c311 : 1
stoichiometry:c312 : 1
m132*0.1
nodelay
--
0
PMID: 17621314, 15623538 TGF-beta1 inhibits TLR-4 expression by suppressing LPS-mediated responses and is also able to induce MyD88 degradation through interactions via its DD.
p96
p96
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c317 : 1
stoichiometry:c319 : 1
stoichiometry:c321 : 1
stoichiometry:c314 : 1
m133*m25*0.1
nodelay
--
0
PMID: 17621314, 15330257 IL-10 is also shown to inhibit the production of pro-inflammatory cytokines through LPS, and in human DCs is known to downregulate IL-12 production through TLR-3- and TLR-4-mediated signalling.
p97
p97
cso30:i:ME_Translation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c316 : 1
stoichiometry:c318 : 1
stoichiometry:c320 : 1
stoichiometry:c315 : 1
m133*m17*0.1
nodelay
--
0
PMID: 17621314, 15330257 IL-10 is also shown to inhibit the production of pro-inflammatory cytokines through LPS, and in human DCs is known to downregulate IL-12 production through TLR-3- and TLR-4-mediated signalling.
p98
p98
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c324 : 1
stoichiometry:c322 : 1
1.0*0.1
nodelay
--
0
PMID: 17621314, 12161427 Previous studies have shown that ATF-3 is able to protect endothelial cells against TNF-induced apoptosis by decreasing p53 transcription.
p99
p99
cso30:i:CE_CellDeath
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c323 : 1
stoichiometry:c325 : 1
m230*0.1
nodelay
--
0
PMID: 17621314, 12161427 Previous studies have shown that ATF-3 is able to protect endothelial cells against TNF-induced apoptosis by decreasing p53 transcription.
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--