Original Literature | Model OverView |
---|---|
Publication
Title
Molecular mechanisms of the anti-inflammatory functions of interferons.
Affiliation
Max F Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, A-1030,Vienna, Austria. pavel.kovarik@univie.ac.at
Abstract
Interferons are pleiotropic cytokines with important proinflammatory functionsrequired in defence against infections with bacteria, viruses and multicellularparasites. In recent years, fundamental functions of interferons in otherprocesses such as cancer immunosurveillance, immune homeostasis andimmunosuppression have been established. In addition, anti-inflammatory roles ofinterferons are well-documented in several inflammatory disease models in themouse, most importantly in experimental autoimmune encephalomyelitis thatresembles multiple sclerosis in humans. While the beneficial effects ofinterferons in such disease models are known, the molecular mechanisms remainpoorly understood. Only recently a few molecular principles for theanti-inflammatory properties of interferons at the cellular level have beenrevealed. They include the ability of interferons to reduce the expression ofthe receptors for the inflammation-related cytokines IL-1 and IL-4, or toincrease the expression of the potent anti-inflammatory genes tristetraprolinand Twist. However, the individual contribution of these anti-inflammatoryresponses to the overall beneficial effects of interferons in inflammatorydiseases is still an open question. Also, the reason for the apparently limitednumber of tissues that are susceptible to the anti-inflammatory functions ofinterferons remains enigmatic. This review summarizes the present knowledge ofthe anti-inflammatory effects of interferons, and describes the currently knownmolecular mechanisms that may help explain the benefits of interferon signallingin several inflammatory diseases.
PMID
18086388
|
Entity
--
e1
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane
--
--
--
csml-variable:Double
m1
0
infinite
0
--
--
e10
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytosol
--
--
--
csml-variable:Double
m10
0
infinite
0
--
type I IFN
--
e11
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m11
0
infinite
0
--
type I IFN:IFNAR1:JAK1:IFNAR2:TYK2
--
e12
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m12
0
infinite
0
--
type I IFN:IFNAR1:JAK1{active}:IFNAR2:TYK2{active}
--
e13
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m13
0
infinite
0
--
stat1{p}:stat2
--
e14
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m14
0
infinite
0
--
stat1{p}
--
e15
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m15
0
infinite
0
--
stat1
--
e16
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m16
0
infinite
0
--
Stat2
--
e17
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m17
0
infinite
0
--
stat1{p}:stat2
--
e18
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m18
0
infinite
0
--
ISRE elements
--
e19
cso30:c:Dna
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m19
0
infinite
0
--
--
e2
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m2
0
infinite
0
--
csml-variable:Double
m20
0
infinite
0
--
IRF9
--
e21
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m21
0
infinite
0
--
ISGF3 complex
--
e22
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m22
0
infinite
0
--
IFN-gamma
--
e23
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m23
0
infinite
0
--
IFNGR1:JAK1
--
e24
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m24
0
infinite
0
--
IFNGR2:JAK2
--
e25
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m25
0
infinite
0
--
IFNGR1:JAK1:IFNGR2:JAK2:IFN-gamma
--
e26
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m26
0
infinite
0
--
IFNGR1:JAK1{active}:IFNGR2:JAK2{active}:IFN-gamma
--
e27
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m27
0
infinite
0
--
IFNGR1{p}:JAK1{active}:IFNGR2{p}:JAK2{active}:IFN-gamma
--
e28
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m28
0
infinite
0
--
IFNGR1{p}:JAK1{active}:IFNGR2{p}:JAK2{active}:IFN-gamma:stat1
--
e29
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m29
0
infinite
0
--
--
e3
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
--
csml-variable:Double
m3
0
infinite
0
--
IFNGR1{p}:JAK1{active}:IFNGR2{p}:JAK2{active}:IFN-gamma:stat1{p}
--
e30
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m30
0
infinite
0
--
(stat1{p})2
--
e31
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m31
0
infinite
0
--
(stat1{p})2
--
e32
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m32
0
infinite
0
--
csml-variable:Double
m33
0
infinite
0
--
csml-variable:Double
m34
0
infinite
0
--
IL-1R
--
e35
cso30:c:mRNA
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m35
0
infinite
0
--
Twist
--
e36
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m36
0
infinite
0
--
Twist:TNF-alpha
--
e37
cso30:c:Complex
cso30:i:CC_NuclearChromosome
--
--
csml-variable:Double
m37
0
infinite
0
--
csml-variable:Double
m38
0
infinite
0
--
IL-4R
--
e39
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m39
0
infinite
0
--
--
e4
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m4
0
infinite
0
--
IFN-alpha
--
e40
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m40
0
infinite
0
--
Twist
--
e41
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m41
0
infinite
0
--
Twist
--
e42
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m42
0
infinite
0
--
Axl
--
e43
cso30:c:mRNA
cso30:i:CC_Cytosol
--
csml-variable:Double
m43
0
infinite
0
--
Axl
--
e44
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m44
0
infinite
0
--
LPS
--
e45
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m45
0
infinite
0
--
NF-kappaB
--
e46
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m46
0
infinite
0
--
NF-kappaB{active}
--
e47
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m47
0
infinite
0
--
Ig complex
--
e48
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m48
0
infinite
0
--
TNF-alpha
--
e49
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m49
0
infinite
0
--
IFNAR1:JAK1
--
e5
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m5
0
infinite
0
--
--
e50
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelopeLumen
--
--
--
csml-variable:Double
m50
0
infinite
0
--
--
e51
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearPore
--
--
--
csml-variable:Double
m51
0
infinite
0
--
--
e52
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearInnerMembrane
--
--
--
csml-variable:Double
m52
0
infinite
0
--
--
e53
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearLumen
--
--
--
csml-variable:Double
m53
0
infinite
0
--
--
e54
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearOuterMembrane
--
--
--
csml-variable:Double
m54
0
infinite
0
--
--
e55
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleus
--
--
--
csml-variable:Double
m55
0
infinite
0
--
--
e56
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleoplasm
--
--
--
csml-variable:Double
m56
0
infinite
0
--
--
e57
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearBody
--
--
--
csml-variable:Double
m57
0
infinite
0
--
--
e58
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleolus
--
--
--
csml-variable:Double
m58
0
infinite
0
--
--
e59
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelope
--
--
--
csml-variable:Double
m59
0
infinite
0
--
IFNAR2:TYK2
--
e6
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m6
0
infinite
0
--
--
e60
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Chromatin
--
--
--
csml-variable:Double
m60
0
infinite
0
--
--
e61
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearChromosome
--
--
--
csml-variable:Double
m61
0
infinite
0
--
--
e62
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearCentromere
--
--
--
csml-variable:Double
m62
0
infinite
0
--
csml-variable:Double
m63
0
infinite
0
--
csml-variable:Double
m64
0
infinite
0
--
PERK
--
e65
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m65
0
infinite
0
--
csml-variable:Double
m66
0
infinite
0
--
csml-variable:Double
m67
0
infinite
0
--
(stat1{p})2{active}
--
e68
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m68
0
infinite
0
--
p38MAPK
--
e69
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m69
0
infinite
0
--
--
e7
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell
--
--
--
csml-variable:Double
m7
0
infinite
0
--
TTP
--
e70
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m70
0
infinite
0
--
TTP
--
e71
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m71
0
infinite
0
--
TNF-alpha
--
e72
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m72
0
infinite
0
--
PERK{active}
--
e73
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m73
0
infinite
0
--
eIF2alpha{p}
--
e74
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m74
0
infinite
0
--
eIF2alpha
--
e75
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m75
0
infinite
0
--
--
e8
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cell_WithoutCellWall_
--
--
--
csml-variable:Double
m8
0
infinite
0
--
--
e9
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytoplasm
--
--
--
csml-variable:Double
m9
0
infinite
0
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c1 : 1
stoichiometry:c2 : 1
stoichiometry:c3 : 1
stoichiometry:c4 : 1
m5*m6*m11*0.1
nodelay
--
0
PMID: 18086388, 15546383, 10526569 Binding of type I IFNs to their receptor (composed of the IFNAR1 and IFNAR2 subunits) activates the receptor-associated tyrosine kinases Jak1 and Tyk2 causing phosphorylation of the receptor and, subsequently, recruitment and phosphorylation of the Stat transcription factors
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c27 : 1
stoichiometry:c28 : 1
m27*0.1
nodelay
--
0
PMID: 18086388 The receptor-associated Jak1 and Jak2 tyrosine kinases are activated and phosphorylate the receptor, thereby generating a docking site for the SH2 domain of Stat1.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c29 : 1
stoichiometry:c30 : 1
stoichiometry:c31 : 1
m28*m16*0.1
nodelay
--
0
PMID: 18086388 The receptor-associated Jak1 and Jak2 tyrosine kinases are activated and phosphorylate the receptor, thereby generating a docking site for the SH2 domain of Stat1.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c32 : 1
stoichiometry:c33 : 1
m29*0.1
nodelay
--
0
PMID: 18086388 After phosphorylation by Jaks Stat1:Stat1 dimers translocate to the nucleus and activate transcription by binding to the GAS elements of IFN-¦Ã responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c34 : 1
stoichiometry:c35 : 1
stoichiometry:c36 : 1
m30*0.1
nodelay
--
0
PMID: 18086388 After phosphorylation by Jaks Stat1:Stat1 dimers translocate to the nucleus and activate transcription by binding to the GAS elements of IFN-¦Ã responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c37 : 1
stoichiometry:c38 : 1
m15*0.1
nodelay
--
0
PMID: 18086388 After phosphorylation by Jaks Stat1:Stat1 dimers translocate to the nucleus and activate transcription by binding to the GAS elements of IFN-¦Ã responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c39 : 1
stoichiometry:c40 : 1
m31*0.1
nodelay
--
0
PMID: 18086388 After phosphorylation by Jaks Stat1:Stat1 dimers translocate to the nucleus and activate transcription by binding to the GAS elements of IFN-¦Ã responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c41 : 1
stoichiometry:c42 : 1
stoichiometry:c43 : 1
m32*m33*0.1
nodelay
--
0
PMID: 18086388 After phosphorylation by Jaks Stat1:Stat1 dimers translocate to the nucleus and activate transcription by binding to the GAS elements of IFN-¦Ã responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c45 : 1
stoichiometry:c44 : 1
1.0*0.1
nodelay
--
0
PMID: 18086388, 15972639 The work by Hu and colleagues shows that IFN-¦Ã suppresses the expression of the IL-1 receptor in macrophages making the cells refractory to IL-1
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c46 : 1
stoichiometry:c48 : 1
stoichiometry:c47 : 1
m38*m36*0.1
nodelay
--
0
PMID: 18086388, 12553906 Twist proteins are transcriptional repressors that bind to the E-boxes in gene promoters, such as the TNF-¦Á promoter, and inhibit transcription
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c50 : 1
stoichiometry:c51 : 1
stoichiometry:c49 : 1
1.0*0.1
nodelay
--
0
PMID: 18086388, 11067899 Both IFN-¦Á and IFN-¦Ã were found to decrease the IL-4 receptor gene expression
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c5 : 1
stoichiometry:c6 : 1
m12*0.1
nodelay
--
0
PMID: 18086388, 15546383, 10526569 Binding of type I IFNs to their receptor (composed of the IFNAR1 and IFNAR2 subunits) activates the receptor-associated tyrosine kinases Jak1 and Tyk2 causing phosphorylation of the receptor and, subsequently, recruitment and phosphorylation of the Stat transcription factors
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c58 : 1
stoichiometry:c52 : 1
m44*0.1
nodelay
--
0
PMID: 18086388 type I IFNs increase the amount of Twist proteins in cells and, consequently, the pre-treatment of macrophages with type I IFNs reduces the capability of immunoglobulin complexes or LPS to stimulate the NF-¦ÊB-mediated expression of TNF-¦Á.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c53 : 1
stoichiometry:c59 : 1
stoichiometry:c54 : 1
m41*m44*0.1
nodelay
--
0
PMID: 18086388 type I IFNs increase the amount of Twist proteins in cells and, consequently, the pre-treatment of macrophages with type I IFNs reduces the capability of immunoglobulin complexes or LPS to stimulate the NF-¦ÊB-mediated expression of TNF-¦Á.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c56 : 1
stoichiometry:c55 : 1
m13*0.1
nodelay
--
0
PMID: 18086388 The up-regulation of Twist by IFNs was indirect and required the IFN-induced expression of the receptor tyrosine kinase Axl.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c60 : 1
stoichiometry:c61 : 1
stoichiometry:c62 : 1
m45*m46*0.1
nodelay
--
0
PMID: 18086388 type I IFNs increase the amount of Twist proteins in cells and, consequently, the pre-treatment of macrophages with type I IFNs reduces the capability of immunoglobulin complexes or LPS to stimulate the NF-¦ÊB-mediated expression of TNF-¦Á.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c63 : 1
stoichiometry:c65 : 1
stoichiometry:c64 : 1
m46*m48*0.1
nodelay
--
0
PMID: 18086388 type I IFNs increase the amount of Twist proteins in cells and, consequently, the pre-treatment of macrophages with type I IFNs reduces the capability of immunoglobulin complexes or LPS to stimulate the NF-¦ÊB-mediated expression of TNF-¦Á.
p25
p25
cso30:i:ME_GeneExpression
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c70 : 1
stoichiometry:c68 : 1
stoichiometry:c86 : 1
stoichiometry:c69 : 1
m47*0.1
nodelay
--
0
PMID: 18086388 type I IFNs increase the amount of Twist proteins in cells and, consequently, the pre-treatment of macrophages with type I IFNs reduces the capability of immunoglobulin complexes or LPS to stimulate the NF-¦ÊB-mediated expression of TNF-¦Á. PMID: 18086388 TTP limits the production of TNF-¦Á under these conditions
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c71 : 1
stoichiometry:c73 : 1
stoichiometry:c72 : 1
m64*m40*0.1
nodelay
--
0
PMID: 18086388, 16571725 In their paper, Ho and Ivashkiv show that IFN-¦Á-activated Stat3 inhibited, in a dose-dependent manner, the transcription of genes that are regulated by Stat1:Stat1 homodimers while the transcription of the ISGF3 (Stat1:Stat2:IRF9) target genes remained unaffected.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c57 : 1
stoichiometry:c67 : 1
stoichiometry:c66 : 1
m43*m13*0.1
nodelay
--
0
PMID: 18086388 The up-regulation of Twist by IFNs was indirect and required the IFN-induced expression of the receptor tyrosine kinase Axl.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c74 : 1
stoichiometry:c75 : 1
m34*0.1
nodelay
--
0
PMID: 18086388, 16571725 In their paper, Ho and Ivashkiv show that IFN-¦Á-activated Stat3 inhibited, in a dose-dependent manner, the transcription of genes that are regulated by Stat1:Stat1 homodimers while the transcription of the ISGF3 (Stat1:Stat2:IRF9) target genes remained unaffected.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c76 : 1
stoichiometry:c81 : 1
stoichiometry:c77 : 1
m32*m69*0.1
nodelay
--
0
PMID: 18086388 Stat1 is recruited to the TTP promoter regardless of p38 MAPK activation, but it requires p38 MAPK to become transcriptionally active.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c7 : 1
stoichiometry:c9 : 1
stoichiometry:c8 : 1
m16*m13*0.1
nodelay
--
0
PMID: 18086388, 11226159, 12671680, 14670297, 7543024 For full responses to both type I and type II IFNs the transactivation domain of Stat1 needs to be phosphorylated on serine 727
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c78 : 1
stoichiometry:c80 : 1
stoichiometry:c79 : 1
m66*m68*0.1
nodelay
--
0
PMID: 18086388 Stat1 is recruited to the TTP promoter regardless of p38 MAPK activation, but it requires p38 MAPK to become transcriptionally active.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c85 : 1
stoichiometry:c84 : 1
m70*0.1
nodelay
--
0
PMID: 18086388 We have demonstrated that both types of IFNs can, in a Stat1-dependent way, induce TTP provided the stress-regulated p38 MAPK is activated simultaneously.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c82 : 1
stoichiometry:c83 : 1
m67*0.1
nodelay
--
0
PMID: 18086388 We have demonstrated that both types of IFNs can, in a Stat1-dependent way, induce TTP provided the stress-regulated p38 MAPK is activated simultaneously.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c88 : 1
stoichiometry:c89 : 1
stoichiometry:c87 : 1
m49*0.1
nodelay
--
0
PMID: 18086388 TTP limits the production of TNF-¦Á under these conditions
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c93 : 1
stoichiometry:c95 : 1
stoichiometry:c94 : 1
m65*m23*0.1
nodelay
--
0
PMID: 18086388 The cytoprotection was caused by the IFN-¦Ã-mediated induction of ER stress via activation of the pancreatic ER kinase (PERK).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c91 : 1
stoichiometry:c92 : 1
stoichiometry:c90 : 1
m66*m40*0.1
nodelay
--
0
PMID: 18086388 in human endothelial cells IFN-¦Á can stimulate TTP transcription even without simultaneous p38 MAPK activation, suggesting that in these cells type I IFNs may directly elicit the TTP-dependent anti-inflammatory responses
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c96 : 1
stoichiometry:c98 : 1
stoichiometry:c97 : 1
m75*m73*0.1
nodelay
--
0
PMID: 18086388 ER stress and PERK activation result in phosphorylation of the ¦Á subunit of the eukaryotic translation initiation factor 2 (eIF2¦Á).
PMID: 18086388 eIF2a phosphorylation imposes a strong reduction in translation that was previously associated with increased resistance to stress
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c10 : 1
stoichiometry:c11 : 1
stoichiometry:c12 : 1
m15*m17*0.1
nodelay
--
0
PMID: 18086388, 8608598, 16571725, 8608597 Stat1 and Stat2 are essential for type I IFN responses whereas the still largely elusive role of Stat3 phosphorylation has only recently begun to emerge
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c13 : 1
stoichiometry:c14 : 1
m14*0.1
nodelay
--
0
PMID: 18086388 After translocation to the nucleus Stat complexes bind to distinct enhancer elements and activate transcription of the type I IFN-responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c15 : 1
stoichiometry:c16 : 1
stoichiometry:c17 : 1
m21*m18*0.1
nodelay
--
0
PMID: 18086388 Herein, the ISGF3 complex consisting of a Stat1:Stat2 heterodimer and the DNA-binding subunit IRF9, which binds to ISRE elements, plays a more important role than the Stat1:Stat1 homodimer that binds to GAS elements.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c18 : 1
stoichiometry:c19 : 1
stoichiometry:c20 : 1
m19*m22*0.1
nodelay
--
0
PMID: 18086388 Herein, the ISGF3 complex consisting of a Stat1:Stat2 heterodimer and the DNA-binding subunit IRF9, which binds to ISRE elements, plays a more important role than the Stat1:Stat1 homodimer that binds to GAS elements.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c21 : 1
stoichiometry:c22 : 1
stoichiometry:c23 : 1
stoichiometry:c24 : 1
m24*m23*m25*0.1
nodelay
--
0
PMID: 18086388 Type II IFN signalling is initiated by binding of IFN-¦Ã to its receptor consisting of the IFNGR1 and IFNGR2 subunits.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c25 : 1
stoichiometry:c26 : 1
m26*0.1
nodelay
--
0
PMID: 18086388 The receptor-associated Jak1 and Jak2 tyrosine kinases are activated and phosphorylate the receptor, thereby generating a docking site for the SH2 domain of Stat1.
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--