Original Literature | Model OverView |
---|---|
Publication
Title
CSF-1 and cell cycle control in macrophages.
Affiliation
University of Melbourne, Department of Medicine, Royal Melbourne Hospital,Parkville, Victoria, Australia.
Abstract
Control of cell proliferation involves a finely interwoven network of positiveand negative cell cycle regulators. Signal transduction pathways linking c-fms(CSF-1R) to cellular proliferation and differentiation are being explored. Partof the strategy is to use a series of G1 inhibitors to help pinpoint relevanttargets. Several inhibitors-8Br-cAMP, interferon gamma (IFN gamma), INFalpha/beta, lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF alpha),and dimethylamiloride-suppress CSF-1-stimulated proliferation in murine bonemarrow-derived macrophages (BMM) even when added in the mid- to late-G1 phase ofthe cell cycle. The down-modulating effects of the inhibitors on the expressionof the following cell cycle regulators have been examined: c-myc, cyclin D1 andD2, cdk4, Rb phosphorylation, E2F binding activity, ribonucleotide reductasesubunits, and PCNA. Some differences in the negative control of such regulatorswere found, for example, in the manner in which IFN gamma and cAMP down-regulatec-myc expression. Using blocking antibodies and BMM from type I IFN receptorknockout mice, it appears that one of these inhibitors, IFN alpha/beta, acts asan endogenous inhibitor in CSF-1-treated BMM and is also responsible, at leastin part, for the inhibition of cell cycle progression by LPS and TNF alpha.Another strategy has been to attempt to relate early biochemical changes inducedby CSF-1 to later changes in the G1 phase, partly by studying cycling versusnoncycling macrophages and partly by using cells expressing c-fms with tyrosinemutations in the intracytoplasmic region. CSF-1-mediated effects on thefollowing signal transduction molecules in these systems will be described:PI3-kinase, myelin basic protein kinases, Erks, and STAT transcription factors.
PMID
8981359
|
Entity
TNF-alpha
--
MO000000289
cso30:c:Protein
cso30:i:CC_CellComponent
--
--
csml-variable:Double
m230
10
infinite
0
InterPro | IPR003636 |
TRANSPATH | MO000000289 |
--
--
e1
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane
--
--
--
csml-variable:Double
m1
0
infinite
0
--
--
e10
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Cytosol
--
--
--
csml-variable:Double
m10
0
infinite
0
--
IFN -alpha
--
e11
cso30:c:mRNA
cso30:i:CC_Cytosol
--
csml-variable:Double
m11
0
infinite
0
--
IFNalpha receptor
--
e12
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m12
0
infinite
0
--
IFNalpha:receptor
--
e13
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m13
0
infinite
0
--
Type I IFN antibody
--
e14
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m14
0
infinite
0
--
LPS:TLR4
--
e16
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m16
0
infinite
0
--
receptor
--
e17
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m17
0
infinite
0
--
TNF-alpha:receptor
--
e18
cso30:c:Complex
cso30:i:CC_Extracellular
--
csml-variable:Double
m18
0
infinite
0
--
unknown compounds
--
e19
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m19
0
infinite
0
--
--
e2
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m2
0
infinite
0
--
cAMP
--
e20
cso30:c:SmallMolecule
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m20
0
infinite
0
--
8Br-cAMP
--
e21
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m21
0
infinite
0
--
Rb
--
e22
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m22
0
infinite
0
--
E2F
--
e23
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m23
0
infinite
0
--
Rb:E2F
--
e24
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m24
0
infinite
0
--
cdk
--
e25
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m25
0
infinite
0
--
E2F-1:CDNA
--
e26
cso30:c:Complex
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m26
0
infinite
0
--
Rb:E2F-1
--
e27
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m27
0
infinite
0
--
Rb{p}:E2F-1
--
e29
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m29
0
infinite
0
--
--
e3
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
--
csml-variable:Double
m3
0
infinite
0
--
Rb{p}
--
e30
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m30
0
infinite
0
--
E2F-1
--
e31
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m31
0
infinite
0
--
mRNA
--
e32
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
csml-variable:Double
m32
0
infinite
0
--
thymidine kinase
--
e33
cso30:c:mRNA
cso30:i:CC_Nucleoplasm
--
--
csml-variable:Double
m33
0
infinite
0
--
PI3-kinase
--
e35
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m35
0
infinite
0
--
PI3-kinase{pY}
--
e36
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m36
0
infinite
0
--
c-fms
--
e37
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m37
0
infinite
0
--
c-fms{pY}
--
e38
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m38
0
infinite
0
--
unidentified proteins
--
e39
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m39
0
infinite
0
--
--
e4
cso30:c:EntityBiologicalCompartment
cso30:i:CC_PlasmaMembrane_InternalSideOfPlasmaMembrane_
--
--
--
csml-variable:Double
m4
0
infinite
0
--
unidentified{p}
--
e40
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m40
0
infinite
0
--
PI-3kinase:c-fms:unidentified
--
e41
cso30:c:Complex
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m41
0
infinite
0
--
s6kinase
--
e42
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m42
0
infinite
0
--
rapamycin
--
e43
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m43
0
infinite
0
--
wortmannin
--
e44
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
--
csml-variable:Double
m44
0
infinite
0
--
JAK kinases
--
e47
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m47
0
infinite
0
--
JAK {active}
--
e48
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m48
0
infinite
0
--
STAT
--
e49
cso30:c:Protein
cso30:i:CC_Cytosol
--
--
csml-variable:Double
m49
0
infinite
0
--
M-CSF:M-CSF-1-R
--
e5
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m5
0
infinite
0
--
--
e50
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelopeLumen
--
--
--
csml-variable:Double
m50
0
infinite
0
--
--
e51
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearPore
--
--
--
csml-variable:Double
m51
0
infinite
0
--
--
e52
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearInnerMembrane
--
--
--
csml-variable:Double
m52
0
infinite
0
--
--
e53
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearLumen
--
--
--
csml-variable:Double
m53
0
infinite
0
--
--
e54
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearOuterMembrane
--
--
--
csml-variable:Double
m54
0
infinite
0
--
--
e55
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleus
--
--
--
csml-variable:Double
m55
0
infinite
0
--
--
e56
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleoplasm
--
--
--
csml-variable:Double
m56
0
infinite
0
--
--
e57
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearBody
--
--
--
csml-variable:Double
m57
0
infinite
0
--
--
e58
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Nucleolus
--
--
--
csml-variable:Double
m58
0
infinite
0
--
--
e59
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearEnvelope
--
--
--
csml-variable:Double
m59
0
infinite
0
--
csml-variable:Double
m6
0
infinite
0
--
--
e60
cso30:c:EntityBiologicalCompartment
cso30:i:CC_Chromatin
--
--
--
csml-variable:Double
m60
0
infinite
0
--
--
e61
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearChromosome
--
--
--
csml-variable:Double
m61
0
infinite
0
--
--
e62
cso30:c:EntityBiologicalCompartment
cso30:i:CC_NuclearCentromere
--
--
--
csml-variable:Double
m62
0
infinite
0
--
STAT{pY}
--
e63
cso30:c:Protein
cso30:i:CC_Cytosol
--
csml-variable:Double
m63
0
infinite
0
--
STAT:STAT
--
e64
cso30:c:Complex
cso30:i:CC_Cytosol
--
csml-variable:Double
m64
0
infinite
0
--
csml-variable:Double
m65
0
infinite
0
--
csml-variable:Double
m66
0
infinite
0
--
IFN-alpha
--
e68
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m68
0
infinite
0
--
IFN-beta
--
e69
cso30:c:Protein
cso30:i:CC_Extracellular
--
csml-variable:Double
m69
0
infinite
0
--
DMA
--
e7
cso30:c:SmallMolecule
cso30:i:CC_Extracellular
--
csml-variable:Double
m7
0
infinite
0
--
IFNbeta
--
e70
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m70
0
infinite
0
--
IFNbeta:receptor
--
e71
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
csml-variable:Double
m71
0
infinite
0
--
IFNgamma receptor
--
e8
cso30:c:Protein
cso30:i:CC_PlasmaMembrane_IntegralToPlasmaMembrane_
--
--
csml-variable:Double
m8
0
infinite
0
--
IFNgamma:receptor
--
e9
cso30:c:Complex
cso30:i:CC_PlasmaMembrane_ExternalSideOfPlasmaMembrane_
--
csml-variable:Double
m9
0
infinite
0
--
p1
p1
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c1 : 1
stoichiometry:c2 : 1
stoichiometry:c3 : 1
m89*m1031*0.1
nodelay
--
0
PMID: 8981359 This report will focus on our attempts to understand some of the signal transduction pathways that lead from the interaction of CSF-1 with its receptor to subsequent DNAsynthesis a few hours later.
p10
p10
cso30:i:ME_Binding
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c26 : 1
stoichiometry:c27 : 1
stoichiometry:c28 : 1
m155666*m3961*0.1
nodelay
--
0
PMID: 8981359 LPS binds its corresponding receptor
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c31 : 1
stoichiometry:c32 : 1
stoichiometry:c33 : 1
m230*m17*0.1
nodelay
--
0
PMID: 8981359 TNF-alpha binds its corresponding receptor.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c139 : 1
stoichiometry:c147 : 1
stoichiometry:c18 : 1
stoichiometry:c35 : 1
m14*0.1
nodelay
--
0
PMID: 8981359 The inhibitors that we have used include dimethylamiloride (DMA) (which inhibits the Na1/H1 antiporter), IFNg, lipopolysaccharide (LPS), tumor necrosis factor a (TNFa), and a number of compounds that raise intracellular cAMP levels. These agents, which apparently have nothing in common, all suppress macrophage DNA synthesis. We propose that LPS and TNFa inhibit DNA synthesis, at least in part, through their induction of endogenous type I IFN. This proposition is supported by the fact that an antibody to type I IFN could partially reverse their inhibitory effects on CBABMM.
p15
p15
cso30:i:ME_CAMPConcentrationElevation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c36 : 1
stoichiometry:c39 : 1
m19*0.1
nodelay
--
0
PMID: 8981359 The inhibitors that we have used include dimethylamiloride (DMA) (which inhibits the Na1/H1 antiporter), IFNg, lipopolysaccharide (LPS), tumor necrosis factor a (TNFa), and a number of compounds that raise intracellular cAMP levels. These agents, which apparently have nothing in common, all suppress macrophage DNA synthesis.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c42 : 1
stoichiometry:c44 : 1
stoichiometry:c140 : 1
m11*m18*0.1
nodelay
--
0
PMID: 8981359 We propose that LPS and TNFa inhibit DNA synthesis, at least in part, through their induction of endogenous type I IFN.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c45 : 1
stoichiometry:c46 : 1
stoichiometry:c47 : 1
m5*0.1
nodelay
--
0
PMID: 8981359, 7761098 We have shown that IFNg can reduce the CSF-1? dependent c-myc mRNA expression.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c50 : 1
stoichiometry:c51 : 1
stoichiometry:c52 : 1
m22*m23*0.1
nodelay
--
0
PMID: 8981359 Rb is a member of a family of tumor suppressor proteins that interact with transcription factors such as the E2F family.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c4 : 1
stoichiometry:c5 : 1
m5*0.1
nodelay
--
0
PMID: 8981359, 6967488 CSF-1 increases plasminogen activator expression in murine macrophages (Hamilton et al., 1980).
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c53 : 1
stoichiometry:c54 : 1
stoichiometry:c55 : 1
stoichiometry:c29 : 1
m22*m26*0.1
nodelay
--
0
PMID: 8981359, 1534305 For example, it is believed that Rb sequesters E2F-1 from the DNA, thus inhibiting its transcriptional activity. When Rb is phosphorylated, it releases E2F-1 which is then able to activate the transcription of genes.
p21
p21
cso30:i:ME_Phosphorylation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c57 : 1
stoichiometry:c58 : 1
stoichiometry:c72 : 1
stoichiometry:c34 : 1
stoichiometry:c56 : 1
stoichiometry:c73 : 1
stoichiometry:c59 : 1
m25*m27*0.1
nodelay
--
0
PMID: 8981359 One of the known signal transduction systems that we have studied is the cyclin D/cdk system. This kinase system is believed to control retinoblastoma protein (Rb) phosphorylation. PMID: 8981359, 1534305 For example, it is believed that Rb sequesters E2F-1 from the DNA, thus inhibiting its transcriptional activity. When Rb is phosphorylated, it releases E2F-1 which is then able to activate the transcription of genes. PMID: 8981359 The addition of LPS, 8Br-cAMP, DMA, or IFNg resulted in suppression of the degree of Rb phosphorylation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c60 : 1
stoichiometry:c61 : 1
stoichiometry:c62 : 1
m29*0.1
nodelay
--
0
PMID: 8981359, 1534305 For example, it is believed that Rb sequesters E2F-1 from the DNA, thus inhibiting its transcriptional activity. When Rb is phosphorylated, it releases E2F-1 which is then able to activate the transcription of genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c63 : 1
stoichiometry:c65 : 1
stoichiometry:c64 : 1
m31*0.1
nodelay
--
0
PMID: 8981359, 1534305 For example, it is believed that Rb sequesters E2F-1 from the DNA, thus inhibiting its transcriptional activity. When Rb is phosphorylated, it releases E2F-1 which is then able to activate the transcription of genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c66 : 1
stoichiometry:c67 : 1
m23*0.1
nodelay
--
0
PMID: 8981359 Some of the genes that are believed to be controlled by the E2F family of transcription factors are important for cell cycle progression. including thymidine kinase, dihydrofolate reductase, and c-myc.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c68 : 1
stoichiometry:c69 : 1
m23*0.1
nodelay
--
0
PMID: 8981359 Some of the genes that are believed to be controlled by the E2F family of transcription factors are important for cell cycle progression. including thymidine kinase, dihydrofolate reductase, and c-myc.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c70 : 1
stoichiometry:c71 : 1
m23*0.1
nodelay
--
0
PMID: 8981359 Some of the genes that are believed to be controlled by the E2F family of transcription factors are important for cell cycle progression. including thymidine kinase, dihydrofolate reductase, and c-myc.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c6 : 1
stoichiometry:c14 : 1
stoichiometry:c16 : 1
stoichiometry:c74 : 1
stoichiometry:c7 : 1
m5*m14*0.1
nodelay
--
0
PMID: 8981359 This report will focus on our attempts to understand some of the signal transduction pathways that lead from the interaction of CSF-1 with its receptor to subsequent DNAsynthesis a few hours later. These results suggested that in most CSF-1?treated BMM cultures, there was an induction of IFNa/b which could influence the results by suppressing the level of DNA synthesis measured. We confirmed that CSF-1 could also induce low levels of IFNa/b production, as a cell-associated activity, in CBA BMM cell cultures. When an antibody to type I IFN was included, there was a regular increase in the rate of DNA synthesis in response to CSF-1
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c87 : 1
stoichiometry:c88 : 1
stoichiometry:c89 : 1
m35*m5*0.1
nodelay
--
0
PMID: 8981359 The PI3-kinase was tyrosine phosphorylated soon after adding CSF-1 to the BMM.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c90 : 1
stoichiometry:c91 : 1
stoichiometry:c92 : 1
m37*m5*0.1
nodelay
--
0
PMID: 8981359 c-fms was also immunoprecipitated and tyrosine phosphorylated, in addition to a number of proteins which we are now trying to identify.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c93 : 1
stoichiometry:c94 : 1
stoichiometry:c95 : 1
m5*m39*0.1
nodelay
--
0
PMID: 8981359 c-fms was also immunoprecipitated and tyrosine phosphorylated, in addition to a number of proteins which we are now trying to identify.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c96 : 1
stoichiometry:c97 : 1
stoichiometry:c98 : 1
stoichiometry:c99 : 1
m36*m40*m38*0.1
nodelay
--
0
PMID: 8981359 These results suggest that, in response to CSF-1, PI3-kinase is tyrosine phosphorylated, and that other proteins associate with PI3-kinase, in addition to c-fms, to form a complex.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c100 : 1
stoichiometry:c102 : 1
stoichiometry:c103 : 1
stoichiometry:c101 : 1
m42*m5*0.1
nodelay
--
0
PMID: 8981359 In contrast, rapamycin, an inhibitor of S6 kinase, inhibited CSF-1-induced DNA synthesis in BAC1.2F5 cells, suggesting that this kinase may be a part of the critical signaling pathway(s).
p35
p35
cso30:i:CE_DNAReplication
cso30:i:CC_Nucleoplasm
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c104 : 1
stoichiometry:c105 : 1
stoichiometry:c106 : 1
stoichiometry:c107 : 1
stoichiometry:c108 : 1
stoichiometry:c109 : 1
m42*m5*m35*0.1
nodelay
--
0
PMID: 8981359 However, there was a synergistic inhibition of DNA synthesis by the combination of wortmannin and rapamycin.
p36
p36
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c110 : 1
stoichiometry:c111 : 1
stoichiometry:c112 : 1
m5*m1357*0.1
nodelay
--
0
PMID: 8981359 These results suggest that STAT1 and STAT3 are activated in the BAC1.2F5 cells in response to CSF-1.
p36
p37
cso30:i:ME_UnknownActivation
cso30:i:CC_Cytosol
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c113 : 1
stoichiometry:c114 : 1
stoichiometry:c115 : 1
m5*m1360*0.1
nodelay
--
0
PMID: 8981359 These results suggest that STAT1 and STAT3 are activated in the BAC1.2F5 cells in response to CSF-1.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c116 : 1
stoichiometry:c117 : 1
stoichiometry:c118 : 1
m13*m47*0.1
nodelay
--
0
PMID: 8981359 JAK kinases can be activated by IFNa/b or IFNg, and the presumed substrates for these kinases are the STAT proteins.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c119 : 1
stoichiometry:c120 : 1
stoichiometry:c121 : 1
m9*m47*0.1
nodelay
--
0
PMID: 8981359 JAK kinases can be activated by IFNa/b or IFNg, and the presumed substrates for these kinases are the STAT proteins.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c8 : 1
stoichiometry:c9 : 1
stoichiometry:c136 : 1
m5*m11*0.1
nodelay
--
0
PMID: 8981359 We confirmed that CSF-1 could also induce low levels of IFNa/b production, as a cell-associated activity, in CBA BMM cell cultures.
p40
p40
cso30:i:ME_Phosphorylation
cso30:i:CC_Extracellular
--
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c78 : 1
stoichiometry:c79 : 1
stoichiometry:c122 : 1
m38*m132*0.1
nodelay
--
0
PMID: 8981359 We also have evidence that Tyk2 is tyrosine phosphorylated after c-fms activation.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c123 : 1
stoichiometry:c124 : 1
stoichiometry:c125 : 1
m48*m49*0.1
nodelay
--
0
PMID: 8981359 JAK kinases can be activated by IFNa/b or IFNg, and the presumed substrates for these kinases are the STAT proteins. The STAT proteins can form homodimers or heterodimers when they are tyrosine phosphorylated, and they can effect DNA transcription through certain DNA response elements in IFN-responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c126 : 1
stoichiometry:c127 : 1
m63*0.1
nodelay
--
0
PMID: 8981359 JAK kinases can be activated by IFNa/b or IFNg, and the presumed substrates for these kinases are the STAT proteins. The STAT proteins can form homodimers or heterodimers when they are tyrosine phosphorylated, and they can effect DNA transcription through certain DNA response elements in IFN-responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c132 : 1
stoichiometry:c129 : 1
m66*0.1
nodelay
--
0
PMID: 8981359 JAK kinases can be activated by IFNa/b or IFNg, and the presumed substrates for these kinases are the STAT proteins. The STAT proteins can form homodimers or heterodimers when they are tyrosine phosphorylated, and they can effect DNA transcription through certain DNA response elements in IFN-responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c128 : 1
stoichiometry:c130 : 1
stoichiometry:c131 : 1
m64*m65*0.1
nodelay
--
0
PMID: 8981359 JAK kinases can be activated by IFNa/b or IFNg, and the presumed substrates for these kinases are the STAT proteins. The STAT proteins can form homodimers or heterodimers when they are tyrosine phosphorylated, and they can effect DNA transcription through certain DNA response elements in IFN-responsive genes.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c134 : 1
stoichiometry:c135 : 1
stoichiometry:c11 : 1
m93217*m5*0.1
nodelay
--
0
PMID: 8981359 We confirmed that CSF-1 could also induce low levels of IFNa/b production, as a cell-associated activity, in CBA BMM cell cultures.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c15 : 1
stoichiometry:c43 : 1
stoichiometry:c137 : 1
m70*m69*0.1
nodelay
--
0
PMID: 8981359 IFNalpha/beta bind their corresponding receptor.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c148 : 1
stoichiometry:c149 : 1
stoichiometry:c150 : 1
m16*m11*0.1
nodelay
--
0
PMID: 8981359 We propose that LPS and TNFa inhibit DNA synthesis, at least in part, through their induction of endogenous type I IFN.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c12 : 1
stoichiometry:c10 : 1
stoichiometry:c13 : 1
m12*m68*0.1
nodelay
--
0
PMID: 8981359 IFNalpha/beta bind their corresponding receptor.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c155 : 1
stoichiometry:c156 : 1
stoichiometry:c157 : 1
m18*m93217*0.1
nodelay
--
0
PMID: 8981359 We propose that LPS and TNFa inhibit DNA synthesis, at least in part, through their induction of endogenous type I IFN.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c142 : 1
stoichiometry:c143 : 1
stoichiometry:c144 : 1
m16*m93217*0.1
nodelay
--
0
PMID: 8981359 We propose that LPS and TNFa inhibit DNA synthesis, at least in part, through their induction of endogenous type I IFN.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c19 : 1
stoichiometry:c17 : 1
stoichiometry:c20 : 1
1.0*0.1
nodelay
--
0
PMID: 8981359 The inhibitors that we have used include dimethylamiloride (DMA) (which inhibits the Na1/H1 antiporter), IFNg, lipopolysaccharide (LPS), tumor necrosis factor a (TNFa), and a number of compounds that raise intracellular cAMP levels. These agents, which apparently have nothing in common, all suppress macrophage DNA synthesis.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c21 : 1
stoichiometry:c22 : 1
stoichiometry:c23 : 1
m1639*m8*0.1
nodelay
--
0
PMID: 8981359 IFN-gamma binds its receptor.
--
and
mass
coefficient1:0.1
coefficient2:1.0
stoichiometry:c24 : 1
stoichiometry:c49 : 1
stoichiometry:c30 : 1
stoichiometry:c25 : 1
m5*0.1
nodelay
--
0
PMID: 8981359 The inhibitors that we have used include dimethylamiloride (DMA) (which inhibits the Na1/H1 antiporter), IFNg, lipopolysaccharide (LPS), tumor necrosis factor a (TNFa), and a number of compounds that raise intracellular cAMP levels. These agents, which apparently have nothing in common, all suppress macrophage DNA synthesis. In a BAC1.2F5 cell line containing the control vector, the addition of IFNg or 8Br-cAMP inhibited the increase in DNA synthesis in response to CSF-1 PMID: 8981359 Studies were done to determine the effects of LPS, TNFa, IFNg, and 8Br-cAMP on the proliferation of BMM from wild-type mice compared with cells from the IFNAR-1 2/2 mice. As before, all agents suppressed DNAsynthesis in the wild-type system.
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputInhibitor
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputAssociation
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:InputProcess
threshold
--
0
1,
--
cso30:c:OutputProcess
threshold
--
0
1,
--